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Abstract

AUDIO DIGITAL SIGNAL
PROCESSING IN REAL TIME

by Paul L. Browning

Most modern desktop computers are equipped with audio hardware.  This

hardware allows audio to be recorded as digital information for storage and

later playback.  This digital information can be manipulated to change how

the audio sounds when played back.  Several digital audio "effects" have

become commonplace because of the flexibility and fidelity of digital

editing.  Sufficient processing power and hardware facilities would allow the

manipulation of audio information in real time on a common desktop

computer.  Successful real-time processing requires a combination of

efficient hardware, process scheduling, and efficient algorithms.  This report

is the result of an investigation of the specific hardware and software

requirements for performing a common set of digital audio processing

"effects" in real time under the Windows 95/NT platform.
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GLOSSARY

Acoustics......................... The study of the physical properties and behavior
of audio waves.

A-D Converter ............... Analog-to-Digital Converter - an electrical device
that converts an analog voltage to a digital value.

Algorithm ....................... A well specified technique for performing a task.

Amplitude....................... The magnitude of a wave.  The amount of air
displaced by each cycle of a sound wave.

All-Pass Filter ................ A unit that has a flat (constant) frequency response
curve.  Note that an all-pass filter does not
necessarily preserve a sound, but has no effect on
the intensity of the sound’s frequency component
intensities.

Analog............................. In a continuous varying form, as opposed to
digital.  Analog signals and values are not
restricted to any minimum unit of measurement.

Audio File ....................... A computer file that contains digital audio data.

Band-Pass Filter ............ A filter that allows only a certain range (band) of
frequencies to pass through.

Base Delay ...................... The fixed part of a delay that is summed with a
modulated delay.

Buffer.............................. A designated area of the computer's memory that
stores a chunk of data.  Buffers are often used to
simplify the procedure of exchanging audio data
between a computer program an the computer’s
operating system.
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Circular Buffer .............. An array of storage locations that has a “end”
which “wraps around” to the beginning when the
end is reached.  Storing data items at the “ top,”
before the “ top”  is advanced allows a fixed
number of previous data items to always be
available.

Cochlea ........................... An organ in the ear that converts eardrum
vibrations into nerve impulses.

Comb Filter.................... A unit that has a frequency response curve with
evenly spaced symmetric peaks.

Complex Exponential.... A number with an exponent that is a complex
number.

D-A Converter ............... Digital-to-Analog Converter - an electrical device
that converts a digital value to an analog voltage.

Device Handle ................ A variable that is used to reference an audio
device.

Dialog Box ...................... A window that appears on the computer’s display,
enabling the user to view and adjust the data and
settings contained in the window.

Digital ............................. In a numeric or binary format, as to allow
processing by a digital computer.

Digital Audio Data......... A series of numeric values that represent audio
information.

Digital Audio Effect....... The manipulation of digital audio data, often to
imitate naturally occurring acoustic phenomenon
such as room echo.

Discrete Function........... A function that is defined only at specific points,
rather than continuously.
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D.M.A. ............................ Direct Memory Access - DMA channels allow
devices to read and write to a computer’s memory
without the intervention of the CPU.  This
provides much faster data transfer than if the CPU
were required.  Most audio hardware uses D.M.A.
facilities to quickly move the large amounts of
data required for digital audio.

D.S.P. .............................. Digital Audio Signal Processing - the analysis and
manipulation of digital audio data.

E.A.R. ............................. “Edit Audio in Real time” - the software written to
accompany this project.

Effect............................... See Digital Audio Effect

Filter ............................... A unit that changes the distribution of frequencies
in an audio signal, according to a linear scaling of
each frequency.  Filters are often used to reduce or
magnify certain frequency ranges.

F.F.T. .............................. Fast Fourier Transform - an algorithm for
converting a series of samples into a series of
values that represents the frequency distribution of
the waveform represented by the samples.

Frequency....................... The number of complete cycles that occur per unit
of time.  A waveform that completes ten cycles per
second has a frequency of 10 Hertz (Hz).

Frequency Analysis ....... The process of determining the distribution of
frequency intensities in a specific audio signal.

Frequency Response...... The distribution of the intensity of the output
frequencies of a unit that modifies an input signal.
A frequency response curve, usually a smooth
curve, shows which frequencies are blocked or
reduced by the unit.

Full-Duplex .................... Having the ability to record and play audio
simultaneously.
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Gain ................................ Multiplying an audio signal by a constant value.
Identical to a volume control.

I.F.F.T............................. Inverse Fast Fourier Transform - an algorithm for
reversing the transformation performed by the
F.F.T.

M.D.I............................... Multiple Document Interface - a framework of
Microsoft Windows functions and classes that
provide support for applications and their
“documents.”

Modulated Delay ........... The part of a delay that varies.  The amount and
fashion that it varies, depends on the
“modulation.”   Note that a modulated delay may
be positive or negative.

Natural Sound................ Sound that occurs in the real world, rather than
information that represents a sound.  Waves of
vibration in a medium of air.

Noise................................ Unwanted or random sound.  Usually at low
levels.

P.C.M.............................. Pulse Code Modulation - the representation of
audio as a series of numerical values, representing
the position of an audio wave at varying points in
time.

Pitch ................................ see Frequency

Playback ......................... The process of converting a series of samples to an
audio signal.

Pseudo-code.................... An English-like description of an algorithm for
ease of understanding.

Real-Time....................... Able to keep up with a well-defined load of work
without exceeding well-defined deadline or
performance criteria for an indefinite length of
time.
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Recording ....................... The process of converting an audio signal to a
series of samples.

Sample ............................ A single unit of PCM digital audio data,
corresponding to the relative air displacement at a
specific instant in time.

Sampling Rate................ The number of samples per second taken when
recording digital audio data.

Triangle .......................... A periodic waveform that linearly increases and
decreases to a specific amplitude, forming a series
of triangles of plotted.

Volume............................ The loudness of a sound.  The amplitude of a
sound wave.

Zero Crossing................. The point at which a wave cross the point of
equilibrium.  With PCM data, samples at this point
usually have a value of zero.
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Chapter 1 - Project Summary and Overview

Summary of Project Objectives

I have always been interested in audio sound effects.  Commonplace audio
hardware allows the typical computer to produce many audio effects by
digitally processing audio data.  With the recent availability of audio
hardware that is capable of playing and recording simultaneously, it should
be possible to perform digital audio effects on a live audio stream.  A
particular audio effect should be possible for a live audio stream if:

A. An algorithm for processing an infinite length of audio data exists

B. The computer has sufficient computing performance.

This project resulted in the completion of the following tasks:

• Investigate the following “effects” : echo, reverb, chorus, flange,
distortion, spectrum analysis, spectrum shifting and scaling, and
filtering.

• Modify existing algorithms or create new algorithms that will
perform the digital effects on a stream of audio data of infinite length.

• Implement the algorithms by creating software for the Windows
95/NT platform.

• Determine the criteria for the software to work in “ real time”.  "Real-
time" will be defined as “an output audio stream keeps up with an
input audio stream of infinite length.”
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Summary of Project Results

The software that I created was named “E.A.R.”  (Edit Audio in Real time).  I
was able to develop algorithms for all the digital effects listed above.
However, some effects require more computation than others.  E.A.R. allows
the effects to be performed in real-time with sufficiently fast computers.  All
effects can also be performed on prerecorded audio files with computers of
any speed.  Following introductions to the “ fundamentals of digital audio”
and “working with PC-based audio” , each chapter summarizes the
mathematical and theoretical basis of each effect.  These summaries are
followed by pseudo-code of the algorithms used in E.A.R., screen-shots, and
a summary of any interesting issues encountered while implementing the
effect.  The series of effects is followed by a description of the inner-
workings of E.A.R. and programming issues addressed during its creation.
This report is concluded with a summary of work done feedback from the
digital audio community, and possible future work.

I used the following hardware and software for the bulk of my work:

�  Microsoft Visual C++ 4.0

�  Dell Optiplex Pentium-Pro 200MHz Computer

�  Sound Blaster 16 Sound Card

�  Microsoft Windows NT 4.0

�  Microsoft Windows 95



3

Chapter 2 - Fundamentals of Digital Audio

Physical Properties of Sound

Digital audio is the representation of natural sound (waves of vibration in a
medium of air) as a set of digital information (a series of numbers). Sound is
created when the air is disturbed, usually by a vibrating object.  The vibrating
object causes ripples of varying air pressure. Very little air actually moves
anywhere, as the pressure change is propagated by the collision of air
molecules, similar to the way ripples spread across the surface of a pond
without causing water currents.  (Pohlmann, 1993, 1-3)  These “waves”  of
varying pressure cause the eardrum to move back and forth.  The movement
is carried from the eardrum to an organ called the cochlea by a series of tiny
bones.  The cochlea contains a series of over 10,000 different-sized hairs,
which convert these vibrations to nerve impulses.  The impulses are carried
to the brain and decoded. (Carley and others, 1995)

The ear processes two characteristics of sound: volume and pitch.  Natural
sounds are composed of multiple pitches, each at a potentially different
volume.  A simple periodic wave, as shown in Figure 2-1, has only one pitch
and volume.  The volume or amplitude of the sound wave corresponds to the
amount of air displaced by each oscillation or wave cycle.  The pitch or
frequency of the wave corresponds to the number of wave cycles per second.
The different-sized hairs in the ear’s cochlea respond to the specific
frequencies present in the sound wave.  The amount of hair vibration and the
intensity of the resulting nerve impulse are proportional to the amplitude of
the particular frequency.  Figure 2-2 illustrates a simple example of two
frequencies present in a combined single sound or waveform.

Cycle 1 Cycle 2 Cycle 3 Cycle 4

1 Second
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Figure 2-1: Amplitude and Frequency of a Simple Cyclic Waveform
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Wave 1 Wave 2 Wave 1 + Wave 2

Figure 2-2: Combining Two Waves of Different Frequencies

Digital audio signal processing is the analysis and manipulation of audio
waveform information, which can become a complex endeavor.  Like many
computer representations of real-world phenomena, the modeling of sound
waves can be performed at any desired level of complexity.  The complexity
of natural acoustics is mostly due to the complexity of the natural world.  As
Figure 2-3 illustrates, even a small sample of a human voice waveform is
very complex and is not completely periodic. Additionally, the physical
properties of objects in a room and the air itself determine what frequencies
are reflected or absorbed.  Most people can listen to a sound from a familiar
source while blindfolded and determine the size of the room.  A well-trained
ear can even determine the types of materials that comprise the walls.

Changing properties, such as the humidity and temperature, can affect the
acoustics of a room.  Additionally, the shapes and angles of the walls of a
room determine the direction that the audio waves “bounce.”   Different
waves that have bounced off of surfaces can collide, causing either an
addition or cancellation effect. (Pohlmann, 1993, 11-12)    This effect can
easily be seen if a small object is dropped in a container of water.  Not all
areas of the water will have the same ripple pattern, due to the waves that are
reflected from the container’s walls.

The size of an object in a room can block or bend different frequencies. For
example: holding a notebook between you and your home stereo will block
out the highest frequencies, but you will still be able to hear the lower
frequencies.  The extent to which a computer can analyze or generate audio
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waves is therefore dependent on the intricacy of the modeled environment.
Computationally generating the sound of a full orchestra to near perfection
would require extremely detailed knowledge of the individual instruments
and the physical environment.  Such a complex model would then need to
track the reflection, bending, and interaction of audio waves about the room.
In reality, such complex models are not practical, just as an engineer would
not perform a simulation at the atomic level when designing a new type of
machinery.

Figure 2-3:  Sample Waveform of a Human Voice

Digital Representation of Sound

For a digital computer to process audio, a method of converting audio to and
from the domain of digital information is required.  The most common
format of digitally representing audio information is Pulse Code Modulation.
Typically, sound waves are converted to a series of numbers (PCM) as
follows:

�  A simple sine wave will be used as an example.  Such a wave would
be generated by an object vibrating in a sinusoidal pattern (similar to
the pattern made by a whistle).  The line through the center of Figure
2-4 represents normal atmospheric pressure.  Portions of the sine
curve above and below the centerline represent positive and negative
pressure changes.
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Figure 2-4: Original Audio Wave

�  Next, a microphone is used to convert the audio signal (in the air) to
an electrical signal.  The microphone’s output range is ±1 volt in
Figure 2-5.
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Figure 2-5 : Electrical Wave

�  The analog electrical signal voltage is then converted to a numerical
value by a device called an analog-to-digital converter.  A 16-bit
analog-to-digital converter, which has an output range of integers
from  –32,768 to +32,767, is illustrated in Figure 2-6.



7

C
on

ve
rt

er
 O

ut
pu

t

Time

+32,767

+16,383

0

-16,384

-32,768

Figure 2-6: Analog-to-Digital Converter Output

�  Because an infinite number of data points can not be recorded to
characterize the waveform, a sample is taken at regular intervals.  The
number of samples taken per second is called the sampling rate.  In
Figure 2-4, 43 samples are taken.
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Figure 2-7: Division Into Samples

	  The resulting series of 43 numbers represents the wave’s position at
each interval, as shown in Figure 2-8.
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Figure 2-8 Resulting Sample Values

The computer can then re-construct the waveform by connecting the data
points. The resulting waveform is illustrated in Figure 2-9.
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 Figure 2-9: Reconstructed Waveform

Note that there are some differences between the original and reconstructed
representations (Figure 2-4 and Figure 2-9):

A. The values that the analog-to-digital converter generates are integers
and are therefore rounded.

B. The accurate reproduction of the shape of the wave is dependent on
the number of samples recorded.
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In general, any finite series of numbers (digital representation) can only
represent an analog wave (real world representation) to a finite accuracy.  It
is important to note that most audio hardware does not produce reconstructed
waveforms by traversing data points in a linear fashion (as was shown in
Figure 2-9).  The electrical characteristics of the equipment’s digital-to-
analog converter, the device that converts data points to corresponding
voltage levels, usually result in a moderately smooth curved waveform.

Sampling Rates

When converting a sound to digital information, an important issue is the
number of samples per second to be taken.  The sampling rate necessary
depends on the fidelity required.

According to Nyquist and Shannon, the sampling rate determines the
maximum frequency information preserved.  To create a wave with a
frequency of F requires 2F samples per second.  However, the Nyquist rate is
not sufficient in most cases.  If a sine wave of 500Hz (cycles per second) is
sampled at a rate of 1000Hz, it is possible that all samples could be taken
when the waveform is at a “zero crossing.”   Sampling at slightly higher rates
than 2F can cause some “strange effects”  of varying amplitude and added
noise. (Currington, 1995)  In general, the higher the sampling rate, the more
accurately lower frequency components of a wave will be reproduced.

It is possible that selection of a sampling rate may have greater repercussions
that discussed here.  Ken Pohlmann (1995, 49-50) writes:

Before we close the book on discrete time sampling, we should mention a
current hypothesis concerning the nature of time.  We mentioned that time
seems to be continuous.  However, some physicists have recently
suggested that, like energy and matter, time might come in discrete
packets.  Just as this book consists of a finite number of atoms and could
be converted into a finite amount of energy, the time it takes you to read
the book might consist of a finite number of time particles.  Specifically,
the indivisible period of time might be 1 X 10-42 second (that’s a 1
preceded by a decimal point and 41 zeros).  The theory is that no time
interval can be shorter than this, because the energy required to make the
division would be so great that a black hole would be created and the
event would be swallowed up.  If any of you out there are experimenting in
your basements with very fast sampling rates, please be careful.
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Chapter 3 - Introduction to Digital Signal Processing with PCs

Running Microsoft Windows 95 and NT

PC-Based Audio Hardware

The typical PC’s audio hardware consists of an analog-to-digital converter
(recording) and a digital-to-analog converter (playback) that is connected to
special audio controller hardware.  Although these are logically separate
components, they are often found on a single silicon chip.

The computer’s software is responsible for sending commands to the audio
controller and allocating memory for audio data.  The audio controller then
transfers chunks (buffers) of audio data directly to or from the computer’s
RAM by the use of a Direct Memory Access (DMA) channel.  DMA
channels are much more efficient for this type of transfer, rather than
involving the CPU in transferring large chunks of data. (Bartee, 1985, 382)
The controller is also responsible for the fine-scale timing of the samples
while playing or recording.

The audio controller and converter components are usually embedded in the
PC’s motherboard circuitry or located on a PC expansion board, called a
sound card.  Most audio hardware for PCs includes 8-bit or 16-bit converters
and supports sampling rates of up to 44100Hz (44100 samples per audio
channel per second).

Figure 3-1 illustrates how a program might play digital audio. The program
packages audio data into buffers, which are transferred by a DMA channel to
the audio hardware.  Similarly, as shown in Figure 3-2, the audio hardware,
by recording, generates a series of samples and stores them into RAM
buffers by using a DMA channel.



11

Figure 3-1: Digital Audio Playback

Figure 3-2: Digital Audio Recording
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Many modern operating systems have built-in audio support, relieving the
application programmer from the details of communicating with audio
hardware.  Instead, the programmer simply allocates memory buffers for
recording or playback and relies on the operating system for proper
sequencing and notification of audio events.

A series of recording and playback buffers can be used on two
interconnected computers for a telephone-like application, as shown in
Figure 3-3.  Each of these computers must have full-duplex capability and a
sufficiently fast connection to each other.

Figure 3-3: Full-Duplex Audio With Two Computers as a Telephone-Like Application

Figure 3-4 illustrates how a series of buffers can be recycled continuously to
play and record at the same time.  The buffers of data produced by the
recording process can be modified or examined before using the data for the
playback process.  After a buffer has been used for playback, it can be reused
as a recording buffer, assuming that the recording and playback buffers are
the same size.
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Figure 3-4: Full-Duplex Audio on a Single Computer by Recycling Data Buffers

Full-duplex audio is not without its snares. Not all PC audio hardware
supports full duplex operation. Additionally, many audio equipment
manufacturers do not supply full-duplex software for operating system
support.  This limitation can be overcome in either case by installing an
additional independent sound card in a computer.

At this point, it becomes obvious that audio processing on a PC can not be
"instantaneous."  Even if the audio information does not need to travel across
a network, a small delay is generated by packing data into buffers and
transferring these buffers to and from memory.  Specifically, the minimum
delay between recording and playback in the previous example (Figure 3-4)
would be: (time to record a buffer + 2*time for a DMA transfer).

A computer program is labeled as "real-time" if it must complete a certain
task within specific time constraints (Deitel, 1984, 8).  Similarly, "real-time"
audio processing for PCs can be performed if the audio input and output can
keep up with each other, without interruption, allowing some finite delay
between recording and playback.
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Working With Audio Under Microsoft Windows 95 and NT

Microsoft Windows supplies a rich set of audio functions for high and low
level control.  This text will focus on low-level functions, as they are
necessary for examining and changing audio data.  Working with audio
hardware at the low level involves the following series of steps:

a) If an audio device, other then the default, is to be used, determine the
device’s number.

b) Referring to the audio device by number, get information about the
device’s capabilities.

c) Referring to the audio device by number, open the device.  Opening a
device produces a device handle.

d) Using the device handle, perform operations with the device.

e) Using the device handle, close the device.

a) Determining the Number of an Audio Device

The number of available audio playback or recording devices can be
determined by using:

UINT waveInGetNumDevs(VOID);

UINT waveOutGetNumDevs(VOID);

b) Getting Detailed Information About a Device

After enumerating the available devices, details about each one can be
obtained by using:

MMRESULT waveInGetDevCaps(UINT uDeviceID,
LPWAVEINCAPS pwic,

    UINT cbwic);

MMRESULT waveOutGetDevCaps(UINT uDeviceID,
LPWAVEOUTCAPS pwoc,

   UINT cbwoc);
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The LPWAVEINCAPS and LPWAVEOUTCAPS structures look like this:

typedef struct {
    WORD      wMid;
    WORD      wPid;
    MMVERSION vDriverVersion;
    CHAR      szPname[MAXPNAMELEN];
    DWORD     dwFormats;
    WORD      wChannels;
    WORD      wReserved1; // padding
} WAVEINCAPS;

typedef struct {
    WORD      wMid;
    WORD      wPid;
    MMVERSION vDriverVersion;
    CHAR      szPname[MAXPNAMELEN];
    DWORD     dwFormats;
    WORD      wChannels;
    WORD      wReserved1;  // packing
    DWORD     dwSupport;
} WAVEOUTCAPS;

wMid, wPid, and vDriverVersion supply information about the specific
hardware and driver versions of the device.  This is usually not of interest to
the programmer, but may be desired to display information for the user.
szPname points to a textual name of the device.  This information could be
used to supply the user with a list of available audio devices. dwFormats
contains information on the particular sampling rates supported.  wChannels
specifies whether the device supports mono or stereo output.  dwSupport
contains information about hardware-specific capabilities that not all devices
support, such as separate left- and right-channel volume control. (Microsoft,
1995)

c) Opening an Audio Device

Once a device number has been selected, the following functions can be used
to open the device, obtaining a device handle:

MMRESULT waveInOpen(LPHWAVEIN phwi,
UINT uDeviceID,
LPWAVEFORMATEX pwfx,

    DWORD dwCallback,
DWORD dwCallbackInstance,
DWORD fdwOpen);
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MMRESULT waveOutOpen(LPHWAVEOUT phwo,
UINT uDeviceID,
LPWAVEFORMATEX pwfx,
DWORD dwCallback,
DWORD dwCallbackInstance,
DWORD fdwOpen);

phwi and phwo are the device handles.  UDeviceID is the numerical identifier
of the device to be opened.  pwfx contains details on the sampling rate and
data format to be used.  dwCallback and dwCallbackInstance contain
information that indicate the desired action (nothing, execute a procedure,
etc.) when an audio event (block finishes playing, recording, etc.) occurs.
fdwOpen contains a set of flags to enable various options when opening the
device. (Microsoft, 1995)

d) Audio Device Operations

To play a block of audio data:

1. Prepare the data block, using waveOutPrepareHeader
2. Send the prepared data block to the device, using waveOutWrite
3. Clean up the block preparation after it has played, using

waveOutUnprepareHeader

To control the playback of audio blocks, use waveInStart, waveInStop, and
waveInReset.

To record a block of audio data:

1. Prepare the data block, using waveInPrepareHeader
2. Send the prepared data block to the device, using waveInAddBuffer
3. Clean up the block preparation after it has been filled with recorded

data, using waveInUnprepareHeader

To stop the recording of audio blocks, use waveOutReset.
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e) Closing an Audio Device

When an audio device is no longer being used, it should be closed.  The
function for closing an audio input or output device is:

MMRESULT waveInClose(HWAVEIN hwi);
MMRESULT waveOutClose(HWAVEOUT hwo);
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Chapter 4 - Delay, Echo and Reverb

Simple Delay and Echo

Delay, echo, and reverb are audio effects that are based on a fixed-length
delay of a sound.  To assist in illustrating these audio effects, this text will
use the following symbols to construct diagrams of audio processing
processes:


  A box represents a delay or filter
�  A triangle represents signal amplitude scaling (gain control)
�  A "plus" represents signal adding (mixing)

In general, delay and echo usually refer to a sound with a delayed version of
the same sound added (Figure 4-1).  Effects with longer delays are often
called echos.  The delay and echo effects have no exact equivalent in nature,
as audio waves in a natural environment bounce back and forth multiple
times (no surface completely absorbs a sound wave).

Figure 4-1: Simple Delay

As shown in Figure 4-2, the delay effect results in certain frequencies being
"cancelled out," if the length of the delay is such that the output of the delay
unit is an inverted form of its input.  Because the frequency response curve
for this effect consists of several evenly spaced symmetric peaks, like a
comb, it is called a comb filter response. (Pohlmann, 1993, 402)

Figure 4-2: Frequency Response Curve of a Simple Delay Effect (Comb Filter)



19

Simple Reverb

Reverb attempts to imitate the natural reflections or reverberation of sound
waves in the environment by adding feedback to the delay system.  In a small
room, for example, a sound might echo back and forth several times before
being completely absorbed by the walls.  In its simplest form, reverb is a
delay with a feedback loop (Figure 4-2). (Currington, 1995)

Figure 4-3: Simple Reverb

The recursive nature of reverb creates a more "spiked" comb filter, as shown
in Figure 4-4.  The longer the delay, the more peaks. (Pohlmann, 1993, 403)

Figure 4-4: Frequency Response Curve of Simple Reverb (Comb Filter)

All-Pass Filters Using a Delay

A feed-forward path can be added to allow a feedback loop while
maintaining a flat frequency response (Figure 4-5).  This type of structure is
called an "all-pass filter,"  (Lehman, 1996) and can be mathematically
proven to have a uniform frequency response (Moorer, 1979, 14).
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Figure 4-5: All-pass Filter

Complex Delay and Reverb Effects

Multiple delay units can be combined to create interesting effects.  Figure 4-
6 illustrates how three delay units can be chained together to create multiple
delays.

Figure 4-6: A Three-Tap Delay

As shown in Figure 4-7, delay units for separate audio channels can have
their outputs crossed to produce "ping-pong" stereo effects.  Note that
technically, this is not a delay effect, because of the feedback loops involved.
However, it is not technically reverb, as none of the delay units have a direct
feedback loop.

Figure 4-7: Ping-Pong Delay by Crossing Delay Units
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Realistic Reverb

In a concert hall, sound waves bounce off of the walls, seats, and floor,
creating a torrent of echos from these surfaces.  Several people have sought
to emulate this effect by studying the reflections caused by a single-source
sound impulse in a room.  In 1970, M.R. Schroeder reported on several ways
to simulate room reverberation by summing the outputs of multiple reverb
units. (Moorer, 1979, 14)  He first suggested the chaining of several all-pass
filters with a single feed-forward loop (Figure 4-8).

Figure 4-8: Schroeder’s Suggested Reverberation Generator (All-Pass Filters)

Moorer (1979, 15) points out the following problems with the results
obtained by this configuration:

1. "The decay did not start with a dense sound and die out slowly in an
exponential manner.  In fact, the higher the order, the longer it took for
the density to build up to a pleasing level.  This produces the effect of a
lag in the reverberation, as if the reverberation followed the sound by
some hundreds of milliseconds."

2. "The smoothness of the delay seemed to be critically dependent on the
choice of the parameters involved: the gains and delay lengths of the
individual unit reverberators.  Just changing one of the delay lengths
from its prime number length to the next larger prime number, which
could be a change as small as 2 samples, has been noticed to occasionally
make the difference between a smooth-sounding decay and a ragged-
sounding decay."

3. "The tail of the decay showed an annoying ringing, typically related to
the frequencies implied by some of the delays.  This produced a
somewhat metallic sound that was generally found objectionable."

Another configuration suggested by Schroeder was a summation of three
comb filters passed into a chain of all-pass filters, as shown in Figure 4-9.
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Figure 4-9: Schroeder’s Suggested Reverberation Generator (Comb and All-Pass Filters)

Moorer (1979, 16) lists the following undesirable characteristics of this
configuration:

1. "Any attempt to reverberate very short, impulsive sounds, such as drum
strokes, gave distinct patterns of echos rather than smooth reverberant
sounds.  The sound was somewhat like flutter echo in rooms with parallel
walls."

2. "The decay continued to show a metallic sound, especially with longer
reverberation times."

Moorer (1975, 27) concludes, after examining several potential reverb
simulation models, that current simulated room reverberation "does not
sound at all like real rooms."  He attributes this to the following facts, which
make simulating room reverberation a complicated task:

1. "The effect of diffusion of echos due to irregularities in the reflecting
surfaces"

2. "The fact that the spectrum of the echo is modified by the reflection in a
manner that depends strongly on the angle of incidence"

Echo and Reverb Algorithms with Pseudo-Code

Echo and Reverb use a fixed-length delay.  Therefore, to implement echo or
reverb, the current sample value must be added to a previous sample value.
The number of samples to "look back" will depend on the delay length.  I
used a circular buffer with a size greater than the maximum "look back"
length.  For each sample to be processed, the echo and reverb algorithms
simply store the current sample value in the circular buffer and then combine
this value with the "look back" value, generating the output value.
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Simple Echo Pseudo-Code

Here is an object-based pseudo-code for simple echo.  Note that
Set_Parameters must be called before any samples are processed.
New_echo_delay is in milliseconds, and new_echo_ratio is a percentage (0-
100).  To process a series of samples, simply call Process with the sample as
a parameter.  The return values of Process are the samples with echo added.

Variables
buffer Array[ECHO_BUFFER_SIZE] of samples
write_position integer
read_position integer
echo_ratio integer

Constructor()
fill elements of buffer with value 0
write_position = 0

Set_Parameters( new_echo_delay integer,
new_echo_ratio integer,
new_sampling_rate integer)

echo_ratio=new_echo_ratio
read_position=(write_position-new_delay*

new_sampling_rate/1000)+ECHO_BUFFER_SIZE)
MOD ECHO_BUFFER_SIZE

 
Process(x sample)

buffer[write_position]=x
return_value=x+buffer[read_position]*echo_ratio/100
write_position=(write_position+1) MOD ECHO_BUFFER_SIZE
read_position=(read_position+1) MOD ECHO_BUFFER_SIZE
return return_value

This effect is extremely fast, as only a few computations per sample are
required.  However, very high sampling rates can require a substantial
amount of processing.  If we assume that an average of 10 calculations per
sample are needed for this effect, processing stereo at a 44,100 Hz sampling
rate (CD quality) will require 882,000 calculations per second to provide this
effect!  These calculations are in addition to the overhead required to play
and record the samples (DMA transfers, operating system calls, etc.).
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Simple Reverb Pseudo-Code

The pseudo-code for simple reverb is very similar.  The key difference is in
Process.  The feedback loop is implemented by storing the output value in
the circular buffer, rather than the original sample (as was done with the echo
effect).

Variables
buffer Array[ECHO_BUFFER_SIZE] of samples
write_position integer
read_position integer
echo_ratio integer

Constructor()
fill elements of buffer with value 0
write_position = 0

Set_Parameters( new_echo_delay integer,
new_echo_ratio integer,
new_sampling_rate integer)

echo_ratio=new_echo_ratio
read_position=(write_position-new_delay*

new_sampling_rate/1000)+ECHO_BUFFER_SIZE)
MOD ECHO_BUFFER_SIZE

 
Process(x sample)

return_value=x+buffer[read_position]*echo_ratio/100
buffer[write_position]=return_value
write_position=(write_position+1) MOD ECHO_BUFFER_SIZE
read_position=(read_position+1) MOD ECHO_BUFFER_SIZE
return return_value

Echo and Reverb Effects in E.A.R.

These algorithms were easy to implement in C++.  I created dialog boxes to
allow the user to enter a delay in the range of 1-1000ms (Figures 4-10 and 4-
11).  This meant that my circular buffers had to be at least 1000ms long.  At
a sampling rate of 44,100 Hz, this is a length of 44,100 elements.  Because
the audio device works with only 8-bit or 16-bit numbers, some range
limiting is done to prevent overflows from occurring.  In the future, I will
probably combine echo and reverb into a single effect, allowing the feedback
to be adjustable.
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Figure 4-10: "Echo Parameters" dialog box for E.A.R.

Figure 4-11: "Reverb Parameters" dialog box for E.A.R.

I derived the "preset" values from experimentation and personal preferences.
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Chapter 5 - Chorus and Flange

Chorus and flange are two very different sounding effects that are produced
by similar processes.  Chorus usually describes an effect that sounds like
multiple instances of the same sound.  A chorus effect might be used to add
depth to a single instrument or make a single audio source sound like
multiple sources.  Using a delay unit with a feedback loop, similar to reverb,
creates simple chorus.  However, chorus uses a varying delay.  As illustrated
in Figures 5-1 and 5-2, controlling a simple delay unit with the output of a
simple waveform generator can produce a constantly varying delay.  Typical
waveforms include triangle and sinusoidal.

Figure 5-1: Simple Chorus and Flange Unit

Figure 5-2: Generating a Varying Delay With a Simple Waveform Generator
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With the chorus effect, the varying delay corresponds to the slight variations
between two "identical" audio sources.  For example: if a person sings with a
recording of herself, there will be slight pitch differences, as the voices slide
in and out of tune with each other.  Similarly, there will be a slight, varying
delay between the two sounds.  Suppose, for simplicity, that the delay is in
the range of 60 to 90ns and slowly increases or decreases until one of these
boundary points is reached, as shown in Figure 5-2.  If the delay is
decreasing, the delayed version of the sound is "stretched out" in time,
making the pitch lower than the original.  When the delay is increasing, the
delayed version of the sound is "squeezed together," having a higher pitch
than the original sound.

Flange is the same process, with a much shorter delay (typically 15-35ms),
and very different effect.  The modulated delay creates a "sweeping" effect.
The flange effect’s name originated from its discovery. Thorderson (1997)
writes:

Folklore has it that the Beatles discovered the Flanger (variations and
accuracy of this tale cannot be verified, so just enjoy the story...OK?). The
story goes that they were using a tape machine for their delay (the record
head puts sound on the tape, and the playback head...located after the
record head...would play the sound back after the original sound...the
delay time depended on the tape speed and the distance between the
record and playback heads) and JL had the deck running at 15ips for a
short, slap back delay.

He happened to touch the edge (or ’flange’ pronounced flanj) of the tape
reel and the pitch of the sound varied some. Being the genius he was, he
began tinkering with the sound. One of the results of their experimentation
included feeding the delayed, pitch modulating sound back at the tape
deck...so much so that it almost began to feedback out of control. The
sound started to curl, and sound like it was in a tube...the engineer
probably started to reach to fix the problem but JL stopped him...a new
sound had just been born. And since the sound is created by gently
grabbing and releasing the flanges of the tape real, the sound became
known as FLANGING.
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Chorus and Flange Algorithm with Pseudo-Code

Flange uses a delay with a varying, but bounded length.  Thus, a circular
buffer can be used to provide a "look back" mechanism.  The primary
difference between the reverb algorithm and the chorus/flange algorithm is
the addition of a varying delay.

Simple Chorus/Flange Pseudo-Code

In this object-based pseudo-code for chorus and flange, linear interpolation is
performed to allow non-integer delay values (i.e. look back 90.25 samples).
This provides a much smoother effect.   Note that Set_Parameters must be
called before any samples are processed.  New_delay is in milliseconds,
corresponding to the "base delay" of the effect (Figure 5.2).  New_depth is
also in milliseconds, corresponding to the "sweep depth" or "modulated
delay" of the effect.  New_rate is the number of "sweep cycles" per second
that occur or the reciprocal of the waveform generator’s frequency.
New_lfo_waveform specifies the type of waveform that is used to regulate
the delay (triangle or sine).  New_dry, new_wet, and new_feedback are
percentages (0-100) that set the corresponding mixing levels (Figure 5-1).
Invert_feedback and invert_mixing allow the feedback and wet signals to be
inverted.  They should have values of +1 or -1.  To process a series of
samples, simply call Process with the sample as a parameter.  The return
values of Process are the samples with the effect added.

Variables
buffer Array[ECHO_BUFFER_SIZE] of samples
input_pointer integer
echo_ratio integer
invert_feedback integer
invert_mixing integer
feedback integer
dry integer
wet integer
delay integer
depth integer
rate floating point
waveform WAVE_TRIANGLE or WAVE_SINE
sampling_rate integer
delay_offset integer
middle_offset integer
samples_per_cycle integer
cycle_position integer
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Constructor()
fill elements of buffer with value 0
input_pointer = 0

Set_Parameters( new_delay integer,
new_depth integer,
new_rate floating point,
new_lfo_waveform WAVEFORM_TYPE,
new_sampling_rate integer,

   new_dry integer,
new_wet  integer,
new_invert_feedback integer,
new_invert_mixing integer,
new_feedback integer)

invert_feedback=new_invert_feedback
invert_mixing=new_invert_mixing
feedback=new_feedback
dry=new_dry
wet=new_wet
delay=new_delay*new_sampling_rate/1000
depth=new_depth*new_sampling_rate/1000
rate=new_rate    
waveform=new_lfo_waveform
sampling_rate=new_sampling_rate;
delay_offset=new_sampling_rate*new_delay/1000
middle_offset=new_sampling_rate*(new_delay+new_depth/2)
              /1000;
// middle_offset is = delay_offset + 1/2 depth offset
// needed for sine LFO calculation,
// because the sine function
// varies between -1 and +1, not 0 and 1

samples_per_cycle=new_sampling_rate/new_rate
cycle_position=0

 
Process(x sample)

x2=x;
if waveform=WAVE_TRIANGLE then

if cycle_position<samples_per_cycle/2 then
offset=input_pointer-delay_offset-

depth*2*cycle_position/
samples_per_cycle

else
offset=input_pointer-delay_offset-

depth*2*
(samples_per_cycle-cycle_position)/
samples_per_cycle
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if waveform=WAVE_SINE then
offset=(input_pointer-depth*

sin(cycle_position/samples_per_cycle*2PI)-
middle_offset+CHORUS_BUFFER_SIZE)
mod CHORUS_BUFFER_SIZE

// get a second offset to do linear interpolation
offset1=truncate_to_integer(offset)
offset2=(offset+1) mod CHORUS_BUFFER_SIZE

// mix the dry part of the signal
x2=x2*dry/100;// determine delay unit output
x3=buffer[offset1]*(1-offset+offset1)+

buffer[offset2]*(offset-offset1)

// add wet signal to dry signal for
// final output
x2=x2+invert_mixing*x3*wet/100

// add feedback to original signal and store
//in delay buffer
store=x+invert_feedback*x3*feedback/100
buffer[input_pointer]=store

// bump up counters
input_pointer=(input_pointer+1)

mod CHORUS_BUFFER_SIZE
cycle_position=(cycle_position+1)

mod samples_per_cycle

return x2;

This effect is a little bit slower than echo or reverb, because more
computations per sample are required.  Because the number of computations
is linearly greater, most computers that can handle the echo or reverb effects
in real time should not have much difficulty with chorus/flange.



31

Chorus and Flange Effects in E.A.R.

This algorithm was easy to implement in C++, once the pseudo-code was
worked out.  The signal inversion options can be used to prevent out-of-
control feedback.  I created a dialog box for E.A.R. to allow all of the
chorus/flange parameters to be set (Figure 5-3).  Some really interesting
things happen when you use high modulation rates.

Figure 5-3: "Chorus and Flange Parameters" dialog box for E.A.R.
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Chapter 6 - Distortion

Distortion is the modification of an original sound.  Thus, any audio effect
qualifies as "distortion."  Outside of this definition, "distortion" is often the
collection of audio effects associated with modifying a sound’s amplitude
without the use of any temporal information.  Because no temporal
information is needed for distortion, each audio sample can be independently
modified.

Distortion can be used to simulate the effects of an amplifier that is
overdriven, and is frequently used with guitars.  As shown in figure 6-1, the
input signal is mixed with the "distorted" signal.  The "distorted" signal is
identical to the original signal, unless it exceeds the "distortion threshold."
When the signal exceeds the distortion threshold, it is changed to the
"clamping level."  For example: suppose we had a distortion threshold of 10
and a clamping level of 20.  Any signal that reaches 10 or more units from
equilibrium is converted to a signal of level 20 (Figure 6-2).

Figure 6-1: Simple Distortion Unit

Figure 6-2: Distortion of an Audio Wave
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Another form of distortion is called "noise gating. "  A noise gate ignores all
parts of a waveform below a specified threshold.  This allows only louder
sounds, or parts of sounds, to pass through the distortion unit (Figure 6-3).
Softer sounds would be suppressed completely.  An interesting effect is
produced for sounds with waveforms that frequently cross the noise gate’s
threshold.

Figure 6-3: Noise-Gate Processing of an Audio Wave

Figure 6-4: Noise-Gate Suppression of a Low-Volume Audio Wave

Distortion Algorithm with Pseudo-Code

Distortion is a really simple algorithm.  Each “distorted”  sample can be
computed with only the value of the original sample.  The original sample
changes only if it is on the wrong side of the “ threshold.”
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Simple Distortion Pseudo-Code

In this object-based pseudo-code for distortion, I allowed for noise gating.
Note that the threshold level applies to positive and negative sample values.
Set_Parameters must be called before any samples can be processed.
new_gate is TRUE if noise gating is to be performed.  New_clamp_level is
the “ threshold level,”  in the range 0-MAX, where MAX is the maximum
possible sample value.  For 16-bit samples, this would be 0-32,767.
New_dry_out and new_distorted_out are mixing percentages (Figure 6-1) in
the range 0-100.

Variables
gate boolean
dry_out integer
distorted_out integer
threshold_level integer
clamp_level integer

Constructor()
fill elements of buffer with value 0
input_pointer = 0

Set_Parameters( new_dry_out integer,
new_distorted_out integer,
new_threshold_level integer,
new_clamp_level integer,
new_gate integer)

dry_out=new_dry_out
distorted_out=new_distorted_out
threshold_level=new_threshold_level
clamp_level=new_clamp_level
gate=new_gate

Process(x sample)

// dry signal gain
 x2=x*dry_out/100;

dist=(double)x;

// perform distortion if threshold is exceeded
if dist>=(threshold_level) AND (not gate) then

dist= clamp_level
if dist<=(-threshold_level) AND (not gate) then

dist=-clamp_level
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if dist<=(threshold_level)) AND
dist>=(-threshold_level))&&(gate)) then

dist= clamp_level;
if (x2<0) then dist=-dist

// distorted signal gain
dist=distorted_out*dist/100

// mix dry signal with distorted signal
x2=x2+dist

return x2;

This effect requires about the same computational speed as echo or reverb.
In my opinion, it is the least interesting of the effects that I investigated.  The
noise gating can be used to eliminate low levels of noise (hissing) from silent
parts of a sound.

Distortion Effect in E.A.R.

This algorithm was easy to implement in C++, once the pseudo-code was
worked out.  Some boundary checking was needed to limit the range of
output values.  I created a dialog box for E.A.R. to allow all of the distortion
parameters to be set (Figure 6-5).  A closer approximation to the distortion
caused by overdriven electrical components (guitar amplifiers) could be
made by more smoothly going from the “ threshold value”  to the “clamping
value”  over multiple successive samples.  Similarly, better noise elimination
during periods of silence could be done with noise gating that requires
several successive samples below the “ threshold value”  before going to the
“clamping value.”

Figure 6-5: "Distortion Parameters" Dialog Box for E.A.R.
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Chapter 7 - Working in the Frequency Domain with the Fast

Fourier Transform (FFT)

Overview of the FFT, IFFT, and Associated Effects

Because the human ear responds to the intensity of the individual frequencies
of sound present, it is often desirable to work with such information. The
Fast Fourier Transform (FFT)  is an algorithm that allows a finite-length
array of sound samples to be converted into an array of frequency intensity
information.  The inverse FFT (IFFT)  converts frequency intensity
information back into sound samples.  The FFT and IFFT can be used
together to change the frequency composition of a finite-length sound.  The
next section provides an overview of the mathematical basis for converting
any periodic function into its frequency components (the Fourier Transform).
However, this conversion only works with continuous functions (real sound
waves).  The following section explains how this mathematical basis can be
used to work with discrete functions (functions that are defined only at
specific points), such as the discrete functions that are represented by a series
of audio samples (the Discrete Fourier Transform).  Finally, a shortcut,
called a “butterfly operation”  allows the Discrete Fourier Transform to be
performed in O(N log2(N)) time complexity, rather than O(N2) (the Fast
Fourier Transform).  While the FFT is a well-known algorithm,
understanding how it works and how it can be used requires a good
understanding of all these concepts.  This chapter is concluded with my
implementation of the FFT, IFFT, and audio effects that use these
transformations.

The Mathematics of the Sound Spectrum

As previously stated, natural sounds are typically composed of multiple
frequencies.  Suppose that we look at a short section of a sound.  For the sake
of analysis, we can ignore the rest of the sound. If we assume that the short
section of the sound is periodic (repeats over and over endlessly), we can
apply the mathematical principles that were developed by Fourier, Bernoulli,
and Euler (Zill, 1989, 192).

For any periodic function (waveform) x(t) which has a period of length T, the
following is true:
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1. x(t) can be represented as the sum of a series of sinusoidal waveforms.

2. Of the sinusoidal waveforms, the lowest possible frequency is Tf 1
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(Zill, 1989, 493)

These results can be applied to discrete functions (functions that are defined
only at specific points), as well as continuous functions.   If we have a
sampling rate of s and a series of N samples:

1. The lowest possible frequency present is
N

s
f =0  and 02 fw π=

2. The series of N samples can be represented as a set of values of an and bn,
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3. The series of N samples can be converted to a set of complex

coefficients, yn, where yn=an+bni.
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4. Integration, to calculate each value of yp, can be performed by computing

the sum: ∑
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5. y0 corresponds to the total value of all the input samples.

6. 
12

1.. −nyy  correspond to the frequency components present in the

waveform, in steps of f0.

7. The magnitude (amplitude)  of each frequency component can be

computed as: 22 __ partimaginarypartrealmagnitude +=

8. The phase angle of each frequency component can be computed as:
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9. It would appear that calculating all values of yn requires O(N2) time.

However, some shortcuts can be taken to reduce the time complexity to

O(N log2(N)).

(Cross, 1997).

The FFT Algorithm

a) Working With Complex Exponentials

For the sake of being more easily manipulated, the sum
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kk ktbktaatx ωω  can be re-written by using

complex exponentials.  (Ifeachor and Davis, 93, 50)
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 This is based on the Euler Identities:
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The complex form of the Fourier series is the most widely used form.

(Castillo, 1997)
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When moved to the discrete function domain, ∑
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values of yk are called the Discrete Fourier Transform (DFT)  of the values
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(Ifeachor and Davis, 93, 57)

b) Butterfly Operations
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If we let x1(m)=EVEN SAMPLES=x(2n)  and
x2(m)=ODD SAMPLES =x(2n+1)
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Thus, if there are an even number of sample values, the problem of

computing yk can be cut in half.  However, an interesting relationship
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Figure 7-1: A Butterfly Operation (Numbers Along Edges Denote Multiplication)
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c) The Algorithm

Note that butterfly operations allow the DFT computation to be broken in

half.  If there are 2n samples, the DFT computation can be repetitively broken

in half.  For a 2-point DFT, the base-case, 101
0

200 xxxWxy +=+=  and

101
0

201 xxxWxy −=−= .

Thus, if there are 2n samples, the DFT can be computed by the use of a series

of butterfly operation stages (Figure 8-2).

Figure 7-2: Use of a Series of Butterfly Operations to Compute an 8-Point FFT

This series of operations can be more easily implemented if the input values
can be sequenced properly. Analysis of the binary representation of the input
value subscripts reveals an underlying pattern.  Specifically, the indices
correspond to the reversed binary representation of the sequence number, as
shown in Figure 8-3.
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Required sequence
for butterfly
computation

Binary address of
required sequence
data

Bit-reversed
addresses

Corresponding element
of original data sequence

x0

x4

x2

x6

x1

x5

x3

x7

000
100
010
110
001
101
011
111

000
001
010
011
100
101
110
111

x0

x1

x2

x3

x4

x5

x6

x7

Figure 7-3: Sequence Re-ordering by Bit-reversal (Ifeachor, 73)

FFT Algorithm with Pseudo-Code

The algorithm would then look like this:

FFT(X,Y) X=inputs  Y=outputs

0 Bit-Reverse-Order(X,Y) 

2 n=length[X] n is a power of 2

3 for s=1 to log2(n)

4 m=2s

5 m
i

m ew
π2

=

6 w=1

7 for j=0 to m/2-1

8 for k=j to n-1 step m

9 t=wY[k+m/2]

10 u=Y[k]

11 Y[k]=u+t

12 Y[k+m/2]=u-t

13 w=w mw

14 return A
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This algorithm runs in O(n log2(n)) time.
(Cormen, 1990, 794)

Cooley (1965) and Tukey brought attention to the FFT, as they realized the
computational potential that it presented.  However, Runge and K¬nig were
probably the first to devise it (Cormen, 800).

The IFFT

An alternate form of the Fourier transform is ∫
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, for

discrete functions.

IFFT Algorithm with Pseudo-Code

This result applies nicely to the FFT algorithm, allowing the negation of a
single term (line 5) and simple division (addition of line 0) to "reverse" the
FFT.
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Using the FFT and IFFT

Because the FFT reveals information about the frequency components of a
finite length of sound, it can be used in any application where this
information is desired.

1. Frequency Spectrum Display

2. Analysis of Musical Notes in a Recording

3. Tuning an Instrument

The IFFT allows the generation of cyclic waveforms, given the frequency
components desired.

FFT(X,Y) X=inputs  Y=outputs

1 Divide all elements of X by length[X]

2 Bit-Reverse-Order(X,Y) 

2 n=length[X] n is a power of 2

3 for s=1 to log2(n)

16 m=2s

17 m
i

m
ew

π2−=

18 w=1

19 for j=0 to m/2-1

20 for k=j to n-1 step m

21 t=wY[k+m/2]

22 u=Y[k]

23 Y[k]=u+t

24 Y[k+m/2]=u-t

25 w=w mw
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The FFT and IFFT can be combined to change the frequency components of
a periodic signal.  First, the FFT is performed.  Second, the frequency
coefficients are changed in some way, and finally, the IFFT is performed,
resulting in the desired signal.

IFFT Algorithm with Pseudo-Code

Distortion is a really simple algorithm.  Each “distorted”  sample can be
computed with only the value of the original sample.  The original sample
changes only if it is on the wrong side of the “ threshold.”

FFT Frequency Analysis Pseudo-Code

In this object-based pseudo-code for frequency analysis, it is assumed that
the FFT conversion is already implemented.

Variables
input_pointer;
total_points;
real_in[MAX], Ar[MAX];
imag_in[MAX], Ai[MAX];

Constructor()

set_size(int size)
total_points=size;
input_pointer=0;

add(x sample)
real_in[input_pointer]=x;
imag_in[input_pointer]=0;
input_pointer=input_pointer+1;

perform_FFT ()
// Perform the FFT algorithm previously
// described, using real_in and imag_in
// as the complex inputs and using
// Ar and Ai to store the outputs
FFT()

input_pointer=0

get_out_power(x integer)
return sqrt(Ar[x]*Ar[x]+Ai[x]*Ai[x])
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First, set_size is called with SIZE, a power of 2 <=MAX.  This will set the
size of the block for FFT functions.  Next, add is called SIZE times.  This
puts the sample data in the buffer to be transformed.  Next, perform_FFT is
called to perform the actual transformation.  The results of the transformation
are retreived by calling get_out_power(x), where x is in the range 0-(SIZE-1).
This provides access to the intensity of each frequency possible.  Each value
of x corresponds to a specific frequency.  Specifically, they are as follows:

1. x=0: Average of all samples

2. x=1 thru (SIZE/2): Frequency=x*sampling_rate/(2*SIZE)

3. x=(SIZE/2) thru (SIZE-1): Frequency=sampling_rate*(1-SIZE)/(2*SIZE)

Note that case 3 is the same as case 2, except the order is reversed.

If more than SIZE samples need to be processed, the add, perform_FFT, and
get_out_power steps can be repeated.

This processing requires much more computational speed than the echo,
reverb, or chorus effects.  My experiments found that it required a Pentium-
based processor to keep up with high sample rates.  Windows NT seemed to
work better than Windows 95 for this high-computation algorithm.  I suspect
that this is because Windows NT has a better process-scheduling algorithm
than Windows 95.

FFT/IFFT Usage and Effects in E.A.R.

This algorithm was much more difficult than echo, chorus, or distortion to
implement in C++.  I started with several well-known public domain
versions of the FFT conversion.  I increased the code’s efficiency by pre-
computing some sine and cosine values that the algorithm needs to do the
complex exponentials.  I also pre-computed the bit-reversal indices for a
performance increase.  To make sure that my FFT implementation was
correct, I created a "monitoring window" that displayed the first 128 values
of the FFT results (Figure 7-4).  The peaks could be used to determine what
notes are present in a musical selection.  The two bars are the average power
levels of the left and right audio channels.
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Figure 7-4: "Monitoring Window" for E.A.R.

After determining that my FFT implementation was correct, I created an
IFFT implementation and verified that following an FFT with an IFFT
produced the original data (a transformation from samples to frequencies to
samples).  Finally, I added some code to shift or scale the FFT results before
the IFFT was performed.  I created a dialog box that allows the user to
specify how the frequency information is shifted or scaled (Figure 7-5).

Figure 7-5: "Pitch Shifting Parameters" Dialog Box for E.A.R.

Shifting down the frequency components a certain percentage seems to work
well.  Shifting up, however, produces some undesirable "warble" and reverb-
like effects.  This is probably due to my "scale up" method.  I plan to get
some help from the digital audio community on this.  Note that shifting the
frequencies by a percentage preserves harmonic relationships (two notes that
are an octave apart will still be an octave apart), while shifting by a constant
amount does not.
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Chapter 8 - Filters and Equalization

The FFT/IFFT combination seems like an ideal way to implement a "filter"
that removes certain frequencies.  However, from my experiences with pitch
shifting, I decided to investigate a different method of filtering with the hope
of finding a faster algorithm (FFT/IFFT requires a lot of computations).

FIR (Finite Impulse Response) filters work by multiplying an array of the
most recent n data samples by an array of constants (called the tap
coefficients), and summing the elements of the resulting array (Frohne,
1997).  The computation of these tap coefficients is accomplished by an
algorithm called "Remez exchange, " and is beyond the scope of this paper.

My investigation of FIR filters was for the purpose of implementing an
"equalizer."  Equalizers are a series of "band-pass" filters (filters that only
allow a certain range of frequencies to pass through).  My work was an
extension of a digital equalizer developed at C.M.U. by Seet (1997).

Seet developed a C++ algorithm for a single band-pass filter with a
frequency range that could be specified.  He implemented an equalizer by
creating multiple instances of the filter and summing their outputs.

Thus, for a single filter with L tap coefficients, bn, ∑
=

−=
L

n
nknk xby

0

,

where y is a filtered (output) sample and x is an original (input) sample

(Siew, 1997).  Seet’s addition of a second filter with tap coefficients cn would

be: ∑∑
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.  Realizing that this was equivalent to
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nknnk xcby
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, I modified Siew’s algorithm so that the tap

coefficients of each filter are added, resulting in a single filter.  For an n-

band equalizer, this results in a reduction of computation for each sample by

a factor of n-1.
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Graphic Equalizer Algorithm with Pseudo-Code

In this object-based pseudo-code for equalization, an unlimited number of
band-pass filters can be used.  First, clear must be called.  Next, for each
filter to add to the system, init must be called.  Gain_int is the gain level (-
100 to +100) of the band-pass filter being added.  Band denotes the total
bandwidth of the filter (range of frequencies covered).  Center specifies the
middle frequency of the filter.  Srate2 is the sampling rate being used, and
drymix is the gain level (0 to 100) of the original signal.  After the filter is set
up, samples can be processed by calling filt.

Variables
dry_mix floating point
b array[SIZE] of floating point
f array[SIZE] of floating point
x array[SIZE] of Samples

Constructor()

clear()
for counter=0 to SIZE-1

f[counter]=0
x[counter]=0;

init( gain_int integer,
band integer,
center integer,
srate2 integer,
drymix integer)

dry_mix=drymix/100;
gain=gain_int/100;
halfband=band/2
w1=(center-halfband)/srate2
w2=(center+halfband)/srate2

// call the routine that calculates the fir filter
// coefficients, placing them in the array "b"
fir(SIZE,w1,w2)

// add the new coefficient values to the
// existing ones
for counter=0 to SIZE-1

f[counter]=f[counter]+b[counter]*gain
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filt(input Sample)
x[0] = input;
output=0

// calculate the sum
for counter=0 to SIZE-1

output=output+x[counter]*f[counter]

// shift the sample array
for counter=SIZE-1 to 1

x[counter]=x[counter-1]

output=output+input*dry_mix

return output

This effect requires more computational speed than echo or reverb, but far
less than FFT/IFFT-based effects.  Most computers that can perform
chorus/flange in real time can also perform equalization in real time.

Equalizer Effect in E.A.R.

This algorithm was more difficult than echo, chorus, or distortion to
implement in C++.  I started with Seet’s algorithm for computing the tap
coefficients.  Next, I incorporated it into the previously described algorithm.
Finally, I set up pre-defined filter frequency ranges and created a dialog box
that allows the user to control the filter array like a 9-band graphic equalizer
(Figure 8-1).  I am very pleased with the results.

Figure 8-1: "Equalizer Parameters" Dialog Box for E.A.R.
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Chapter 9 - Programming E.A.R. - Program Design

Overview of E.A.R.

E.A.R. (Edit Audio in Real time) is a program that allows digital editing of
either a live stream of audio or a pre-recorded sound that is stored in a file.  I
used the following basic design principles:

1. All editing "effects" are implemented as objects.  Each object has
methods to set parameters, process data, etc.  This allows easy code
reuse, program consistency, and program readability.

2. The real-time and file processing routines use the same "effect" objects.
If there is stereo processing of a monaural effect, two identical "effect"
objects are used.

3. All buffer sizes are user-definable so that the "computer guru" can tweak
performance.

4. The real-time "effect" settings are stored in memory and may be saved as
new default values.

5. The last-used values for each file-based "effect" setting are saved in
memory and may be saved as default values.

6. Only the standard sound and file I/O routines are used, as opposed to
writing my own low-level software that might be faster, but less portable.

Playback and Recording

The same memory buffers are used for recording and playback when
simultaneous recording and playback are occurring. (Figure 9-1)  This
reduces the overall RAM needed and eliminates the time that moving data
from a recording buffer to a playback buffer would require.
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Figure 9-1: Recycling memory buffers for recording and playback

Playback of a loaded sound is simpler.  The data is simply packaged into
buffers, which are shipped off to the sound card drivers.  Buffers are re-used,
once they have played.  (Figure 9-2)

Figure 9-2: Recycling memory buffers for playback

Recording and Playback Buffer Variables in E.A.R.

Object or Variable Purpose

WAVEHDR buffers[TOTAL_AUDIO_BUFFERS] Contains information about the
contents of each buffer (sample rate,
memory location, etc.)

int     buffer_status[TOTAL_AUDIO_BUFFERS] Used to keep track of the status of
individual memory buffers while
playback or recording is occurring.

int status, status_flag; Indicate the status of the recording/
playback system.  Is it recording,
recording and playing, idle, or in a
critical section?
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Playback and recording buffers can be almost any size.   For simultaneous
recording and playback, smaller buffers allow the delay between the input
and output to be reduced.  However, smaller buffers require more calls per
second to operating system routines, and hence, more overhead.  To satisfy
all users of E.A.R., I have added dialog boxes to allow the user to "tweak"
buffer parameters for his or her computer (Figure 9-3).

Figure 9-3: "Buffer Sizes" dialog box for E.A.R.

Additionally, I created a "Sound Device Parameters" dialog box for setting
up separate input and output devices for users that have two sound cards
rather than a single full-duplex sound card.  For slower computers, the
sampling rate can be lowered to allow real-time operation. (Figure 9-4)

Figure 9-4: "Sound Device Parameters" dialog box for E.A.R.
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Before implementing any effects, I added a facility for loading audio data
from disk.  This allowed the algorithms to be tested with static data.  E.A.R.
currently can read Sun’s .AU and Microsoft’s .WAV formats.  Using
Microsoft’s MDI (Multiple Document Interface) facilities, the program treats
each loaded sound as a "document."  This allows multiple sounds to be
loaded simultaneously.  Each "document" has an MDI "view," which is a
window that displays the document (Figure 9-5).  The "view" class for my
program includes methods that allow the user to select regions of the sound
for processing, "zoom in," and perform clipboard operations.

Figure 9-5: Audio "Document" view for E.A.R.

To make the program as intuitive as possible, most functions are available as
a series of buttons.  I created three "button bars" to categorize the functions.
The first bar contains buttons that perform file operations, clipboard
operations, and control file playback.  The second bar contains buttons that
enable the real-time effects and frequency display.  The third bar contains
buttons that control the file-based effects.  The MFC interface directly
supports these button bars (Figure 9-6), requiring only the button images and
appropriate event-handlers from the programmer.

At this time, I am unsatisfied with several functions.  The printing capability
could be improved.  Currently, the entire waveform in squashed onto a single
page.  When the waveform is drawn on the screen or printer device such that
the number of samples represented is greater than the number of pixels
available, my code simply skips some of the samples.  This can have an
unwanted effect of making the signal appear to be silent when it is not.  The
clipboard functions do not allow cut and paste operations between windows
with different sampling rates, as no functions to perform sample-rate
conversion have been implemented.
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Figure 9-6: MDI design and button bars in E.A.R.

The MDI framework breaks a program up into several classes: program,
documents, views, and windows.  Figure 9-7 illustrates how the inner-
workings of E.A.R. fit into this framework.

Figure 9-7: MDI framework of E.A.R.
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Chapter 10 - Project Results

Overall Conclusions


  Real-time audio is possible with 486 or Pentium-based computers.

�  Real-time audio processing is limited by the processing speed of the
computer.

�  FFT-based processing requires much more processing capability than
most other digital effects (echo, reverb, chorus, flange, and distortion),
requiring a Pentium-120 or faster to perform FFT-based effects in real
time.

�  Echo, reverb, chorus, flange, distortion, frequency analysis, and pitch
shifting can be performed in real-time with a sufficiently fast computer.
Thus, algorithms can be written to perform these operations on a data
stream of infinite length.

�  With Windows 95/NT, better multimedia performance can be achieved
by using callback functions, rather than a timer-driven strategy for
scheduling sound buffer I/O.  I tried both methods while writing E.A.R.

�  Typical computers can process real-time audio with a delay < 0.5
seconds

�  Windows NT provides better performance than Windows 95 for
multimedia tasks.  I am attributing this to process scheduling algorithms,
rather than any substantial device driver differences.



59

Improvements and Future Work to be Done

�  Most effect algorithms can have their performance increased.
�  The pitch shifting effect needs improvement.  Some undesired "side

effects" seem to be occurring.  This may be partially because the FFT is
based on periodic functions.  The "windows" of data being processed are
not actually periodic (they are in a series of differing windows of data).
One solution that has been suggested is somehow "mixing" subsequent
windows of data to reduce problems that occur at "window boundaries."

�  There are many more "effects" that could be implemented (noise
reduction, compression, etc.)

�  E.A.R. could have functions for better file-based editing.
�  The waveform display in E.A.R. needs to be improved.
�  Currently, the real-time effects do not change as the effect parameters are

adjusted.  Instead, they change when the user presses the "OK" button.
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