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Abstract

We know that the cone of Euclidean distance matrices does not intersect the cone of positive semidefinite
matrices except at the origin in the subspace of symmetric matrices. Even so, the two cones can be related
by an equality.
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1. Background

In the subspace of symmetric matrices S, we know that the convex cone of Euclidean distance
matrices EDM (the EDM cone) does not intersect the positive semidefinite cone S+ except at
the origin, their only vertex; there can be no positive nor negative semidefinite EDM [6].

EDM ∩ S+ = 0 (1)

Even so, the two convex cones can be related. We establish an equality

EDM = Sh ∩ (S⊥
c − S+) (2)

where

Sh
�= {A ∈ S|diag(A) = 0} (3)

is the symmetric hollow subspace, and where
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S⊥
c = {u1T + 1uT|u ∈ RN } (4)

is the orthogonal complement of the geometric center subspace

Sc
�= {Y ∈ S|Y1 = 0} (5)

In N -dimensional real Euclidean vector space RN , 1 denotes a vector of ones. Equality (2) is
not obvious from the various EDM definitions, such as in [5], because inclusion must be proved
algebraically. Equality (2) is equally important as the known isomorphisms [2, Section 2] relating
the EDM cone to a face of the positive semidefinite cone. But those isomorphisms have never led
to this equality relating whole cones EDM and S+.

We invoke a matrix variant of the algebraic Schoenberg criterion [8] to illustrate correspondence
between the EDM and positive semidefinite cones:

D ∈ EDM ⇔
{−V DV ∈ S+
D ∈ Sh

(6)

where V is the geometric centering matrix

V
�= I − 1

N
11T ∈ SN (7)

in the ambient space of symmetric matrices S of dimension N .

2. Equality

Consider two convex cones K1 and K2 respectively defined

K1
�= Sh

K2
�= {A ∈ S|−V AV ∈ S+} (8)

so that

K1 ∩ K2 = EDM (9)

Gaffke and Mathar [4, Section 5.3] observed that projection on K1 and K2 have simple closed
forms: Projection on subspace K1 is easily performed by symmetrization and zeroing the main
diagonal or vice versa, while projection of H ∈ S on K2 is

PK2H = H − PS+(V HV ) (10)

where PS+ denotes projection on the positive semidefinite cone. Matrix product V HV is the
orthogonal projection of H on the geometric center subspace Sc. Thus the projection product

PK2H = H − PS+PScH (11)

Because projection on the intersection of the positive semidefinite cone with the geometric center
subspace is equivalent to a (noncommutative [3, Section 5.14]) projection product

PS+∩Sc = PS+PSc (12)

a set equivalence follows:

{PS+PScH |H ∈ S} = {PS+∩ScH |H ∈ S} (13)
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Fig. 1. EDM cone construction in isometrically isomorphic R3.

Polar cone K◦ is a unique closed convex cone characterized by Moreau [7]:
for closed convex cone K

x = x1 + x2, x1 ∈ K, x2 ∈ K◦, x1 ⊥ x2
⇔

x1 = PKx, x2 = PK
◦ x

(14)

which leads to concise cone relations

K ≡ {PKx|x ∈ RN }
K◦ = {x − PKx|x ∈ RN }

(15)

the former being obvious for any closed set K. Thus

Sc ∩ S+ ≡ {PS+PScH |H ∈ S}
(Sc ∩ S+)◦ = {H − PS+PScH |H ∈ S} (16)

Deutsch [3, Section 4.6] provides polar transformation of an intersection of closed convex cones
to vector sum, from which

K2 = (Sc ∩ S+)◦ = S⊥
c − S+ (17)

because the subspace polar is its orthogonal complement, and the positive semidefinite cone is
self dual. We therefore get the equality

EDM = K1 ∩ K2 = Sh ∩ (S⊥
c − S+) (2)

whose veracity is intuitively evident, in hindsight [1, p. 109].
A realization of this construction in low dimension is illustrated in Fig. 1. Orthogonal comple-

ment S2⊥
c (4) of the geometric center subspace (a plane in isometrically isomorphic R3; drawn is a

tiled fragment) supports the positive semidefinite cone. (Rounded vertex is artifact of plot.) Line S2
c

runs along positive semidefinite cone boundary �S2+. EDM cone construction is accomplished by
adding the polar positive semidefinite cone to S2⊥

c . Difference S2⊥
c − S2+ is a halfspace partially

bounded by S2⊥
c . The EDM cone is a nonnegative halfline along S2

h in this dimension.
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3. Conclusion

Although its roots lie in the algebra of Schoenberg, we derived our main result (2) via estab-
lished projection theory given by Moreau and by Deutsch. Equality (2) is a recipe for constructing
the EDM cone whole from large Euclidean bodies: the positive semidefinite cone, orthogonal
complement of the geometric center subspace, and symmetric hollow subspace.
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