

ESP2

ENSONIQ SIGNAL PROCESSOR 2

Part I

Instruction and Hardware Specification

1995

David Andreas
Jon Dattorro

J. William Mauchly

0. Introduction...5
1. Chip Overview..6

1.1. Chip Architecture ...7
1.1.1. Function Units: MAC, ALU, AGEN..8
1.1.2. Internal Registers. ...8
Table 1. Internal Register Address Map..8
1.1.3. GPR and AOR...9
1.1.4. SPR ..9
1.1.5. Internal Register Usage ...10
Table 2. Registers as Operands ...10
1.1.6. Instruction Memory ...10
1.1.7. Future Expandability ...10
1.1.8. Internal Operand Busses ...10
1.1.9. External Interfaces ..11

1.2. Instruction Cycle Timing...12
1.3. Latency ...13

1.3.1. Inter-Unit Latency...13
1.3.2. Latency of External Memory Access via AGEN13

2. Multiplier/Accumulator/Shifter ...15
2.1. Architecture..15

2.1.1. Exception Processing ...17
Table 3. Multiplier Exceptions...17

2.2. MAC unit Barrel Shifter ...17
2.3. Accessing the MAC unit ..17

2.3.1. Writing the MACP (Preload) latch...18
2.3.2. Reading the MAC latch ...18
2.3.3. MAC Result Low latch (MACRL)..18

2.4. MAC unit Instructions ..19
Table 4. MAC unit List of Instructions ..19

2.5. MAC unit Pseudo Instructions ..20
3. ALU and Instruction Set ...24

3.1. ALU Instructions ..25
3.2. ALU Pseudo Instructions ..42
3.3. Condition Code Register ...48

3.3.1. Setting Condition Codes...49
Table 5. CCR Setting by Instruction..49
3.3.2. Conditional Execution Mechanism ...51
3.3.3. Instructions Not Skippable ..52
3.3.4. Arithmetic Condition Masking ...52
Table 6. Arithmetic Condition Code Masks ...53

3.4. Instruction Cycle Execution Latency (Latent Instructions)..........................54
4. Indirect Register Addressing...58

4.1. Exceptions to Indirection..59
Table 7. Indirection Operand Availability..59

4.2. Pointer Register Latencies..60
5. Internal Memory Refresh ..61

5.1. Instruction Refresh...61
5.2. GPR and AOR Refresh..61

5.2.1. Internal Register Refresh during Suspension/Halt62
5.2.2. Internal Register Refresh Collision..62

6. SPR Hazards..63

 3

7. External Data-Memory Interface ..64
7.1. Address Generator (AGEN) Architecture...64

7.1.1. AGEN Address Calculation..65
7.1.2. Plus-One Addressing Mode ..65
7.1.3. Extent of the Modulo ...66
7.1.4. Other External Memory Configurations ..66
7.1.5. UPDATE region BASE...66

7.2. AGEN Instructions ..67
7.3. Accessing the Region Control Registers and AORs.......................................67
7.4. External Memory Access ..67

7.4.1. External Address Buss...69
Table 8. External Address Pin Connection ..69
7.4.2. External Memory Data-Interface...70

7.5. External DRAM Refresh...71
7.6. Initializing or Accessing External Memory from the System Host72

8. Serial Interface..73
8.1. Serial Interface Control Registers ..73

Table 9. Serial Interface Control Registers ...73
8.2. LRCLK ..74
8.3. WCLK ...74
8.4. BCLK ..75
8.5. An Example of Serial Interface Control Register Settings75
8.6. Serial Interface Rules ...77
8.7. Serial Reset and Synchronization...77

9. Halt and Suspension States...78
9.1. Halting the Chip..78
9.2. Chip State during Halt and Suspension..78
9.3. Single Step Mode ..80
9.4. Single Pass Operation...80

10. Chip Reset, Initialization, and Synchronization...81
10.1. Reset ...81
10.2. Initialization..82
10.3. Synchronization...83

Table 10. SYNC_MODE bit functionality...83
11. Special Purpose Registers..84

11.1 SPR Descriptions ...89
12. Host/ESP2 Interface ..93

12.1. Host/ESP2-Register Interface...94
12.1.1. Writing GPR/AOR/SPR...94
12.1.2. Reading GPR/AOR/SPR ..94

12.2. Host/ESP2-Instruction Interface ..95
12.2.1. Writing Instruction Memory..95
12.2.2. Reading Instruction Memory..95

12.3. Host Interface Registers ...96
12.3.1. Testing..96
12.3.2. Some Host Interface Register Descriptions99

13. Pin List...100
Table 11. ESP2 Chip Pinout ..101

 4

MISSING INFORMATION:

Serial, external memory, and host interfaces; setup & hold times.
Recommend pull-up resistor values.

 5

0. Introduction

The demands of digital audio require particular features from DSP (Digital Signal
Processing) chips for sound-effect design. The semiconductor industry serves a broader
customer base, however. While several commercial processor chips are more or less
suitable to the audio technical community, this is not what drives digital audio-based
companies into the intense and expensive design cycle of custom VLSI. The principal
driving force is the competitive edge gained by proprietary hardware which stifles reverse
engineering. The primary end-product, of course, is software; the algorithms which drive
the chips.

To remain competitive with contemporary products, a typical commercial sound-effects
box needs to execute roughly 30 different algorithm types, each satisfying certain artistic
standards of quality. While in the throes of an audio signal processor design, a DSP guru
from CCRMA, Stanford University, theorized that most DSP algorithms can be
formulated in terms of the digital filter. [Moorer] Reverberation algorithm design,
however, remains more of an artistic endeavor than a science; this elusive specialty is still
dominated by a few companies having the benefit of an early start. [Blesser/Bader]
[Griesinger]

Having this mandate, three design engineers were given carte blanche in 1990 to improve
upon an existing and proven chip design known as ESP. Rarely does an audio-product
specification call for the algorithm designers to engineer the computer as well. The
outcome is the fixed-point ESP2 which, as it turns out, exceeds the capabilities of
commercial DSP chips with regard to audio processing efficiency.

The purpose of Part I, the Hardware (or Chip) Specification, is to explain the ESP2 chip
design philosophy as it pertains to DSP applied to audio. The ESP2 programming
Language is discussed in Part II, often referred to as the Software Specification. We
discuss effect design and present algorithms for several practical and real Audio
Applications in Part III. We do this, first, to highlight the efficiency of the ESP2, second,
as an exposition of how fundamental DSP operations are accomplished in real-time, third,
to present some new results in the field of audio and DSP.

 6

1. Chip Overview

Part I fully explains the functionality of the Digital Signal Processor chip called ESP2. To
assist the programmer, this Chip Spec. explains the implementation of all the ESP2
instructions. The information required by the engineer to design this chip into some
system is also found here, and is explained so as to be accessible to programmers having a
limited hardware background.

The information regarding the instructions is supplemented in Part II, the Language and
Software Spec., which explains nuances of the syntax which is the ESP2 assembly
language. The ESP2 language resembles some aspects of the C programming language.
The language is easy to learn, intuitive, and truly a step up from the standard practice of
manipulating unmeaningful register names.

The Software Spec. should be read by anyone using the ESP2 for intensive operations
involving external memory access (e.g., Reverberator design). Other engineers wishing to
write simpler test programs can get by with Part I and an example of a complete ESP2
program from which they may derive a shell to work within. Programming examples can
be found in the Applications section, Part III. The References are found thereafter.

The ESP2 chip architecture, shown in Figure 1, is optimized for the processing of audio
signals. The demands of audio dictate a minimum single precision bit-width of 24 bits.
The most prominent feature of this architecture is the three parallel function units:
Address Generator (AGEN), Arithmetic Logic unit (ALU), and
Multiplier/Accumulator/shifter unit (MAC unit).

Each function unit is complemented by extra source/destination registers called SPR
(Special Purpose Register). These registers all have unique purposes specialized to the
unit that they support. In many instances SPRs increase the number of operands
employed by a single instruction.

The AGEN is supported by a distinct block of registers called AOR (Address Offset
Register), which facilitate random access of off-chip data on each instruction cycle. These
registers provide address offsets to AGEN's modulo address calculation mechanisms.
Unlike conventional DSP chips, the AORs facilitate the design of sparse digital networks
which is a requirement of audio signal processing; e.g., digital reverberators.

Both the ALU and the MAC unit perform their three-operand instructions directly on all
the internal registers including GPR (General Purpose Register). MAC unit and ALU
direct access of SPR is useful to control the many specialized processes. The AORs are
directly accessible from the ALU and MAC unit for the purpose of modulating addresses
or for any general purpose. This feature is useful for time-varying processes.

The instruction memory is 96 bits in width and completely internal; i.e., there is no
provision for off-chip program memory. This large instruction word supports the parallel
architecture such that all three units can function in parallel while the instruction set
supports this. While the ESP2 also supports standard program control operations such as
branching and calls to subroutines, there are hardware provisions for program space
conservation. This conservation includes a low-overhead looping mechanism and
conditionally executable instructions. The latter feature eliminates the overhead
associated with branching around status dependent code, and improves efficiency three-

 7

fold through the selective conditional execution of any or all of the parallel function unit
operations.

Although the ESP2 is inherently a parallel/pipeline design, all ESP2 instructions
individually execute in the same amount of time (one instruction cycle, four system clocks)
under all circumstances.

 8

1.1. Chip Architecture

AOR

452 by 24bits

GPR

456 by 24bits

ALU

Z buss 24bits

W buss 24bitsX buss 24bits Y buss 24bits

C

BA

MAC unit

Barrel Shifter

D E

F external
address buss

external
data buss

24

AGEN

(DIL, DOL)

SPR

G

(region control)

SPR

SPR
24

SPR

Figure 1. ESP2 Chip Architecture

IFLG

IOZ status

4

s
y
n
c
h
r
o
n
i
z
a
t
i
o
n

IFLAG pin

IOZ pin

RES\ pin

SPR

35

SPR

96

host
address buss

host control

SPR
3

HOST INTERFACE

host
data buss

8
5

32 by 24bits

24 by 24bitsINSTRUCTION MEMORY

1024 by 96bits
(internal)

memory
external

control

(SER)

serial data
8 stereo(2 x 24)

SPR

serial control 6

SPR

SERIAL INTERFACE

16 by 24bits

6

8
2

OFLAG pin

 9

1.1.1. Function Units: MAC, ALU, AGEN
The three main function units are designed to execute in parallel employing an instruction
set which supports the parallelism. The internal pipeline design dictates a specific
hardware ordering-in-time which sees the MAC unit first, followed mid-cycle by the ALU.
The AGEN timing exactly parallels that of the MAC unit. Some of the inter-unit pipeline
latencies discussed (see the Instruction Cycle Timing diagram), will be more easily
understood if this ordering-in-time is kept in mind.
The order of each instruction field, on the programmer's single line of code (one
instruction cycle, one program line, one instruction line), within which each unit's
instruction will be found is:
 MAC unit ALU AGEN
The latencies are few, while easy-to-understand charts are presented in the Software
Specification to assist the programmer. It is important that the programmer recognize
that the speed and efficiency of the ESP2 processor for most all DSP tasks is facilitated by
this pipeline design.
One benefit of the parallelism is that the programmer will find many common instructions
amoung the units; e.g., both the MAC unit and ALU have identical MOV and identical shift
(ASH) syntax, so the programmer can simply cut and paste into the appropriate field.

The MAC unit is a three operand device (two source, one destination), plus a seed source.
The MAC unit instruction set comprises 20 fundamental instructions, 10 variations, and
an assortment of pseudo instructions providing a large palette of
multiply/accumulate/shift operations. A prominent feature of the MAC unit is the ability
to selectively inhibit latching of the accumulator result while sending it to some
destination register. A Barrel Shifter is integral to the MAC unit, available on a per-
instruction basis, and can be accessed by the ALU. The Barrel Shifter can be used to shift
either the input to the accumulator or the accumulator output.

The ALU instruction set consists of 32 standard, non-standard, and Boolean instructions.
All of these instructions can take two source operands and another destination operand.
The non-standard operations are used for such things as FFTs, envelope generators,
stereo-to-mono signal conversion, etc. The ALU instruction set is augmented with a wide
assortment of pseudo instructions. Program control instructions which allow conditional
branching are found in the ALU. While branching allows the programmer to jump over
parallel instructions to the ALU, MAC unit, and AGEN, a separate mechanism allows
conditional execution of individual instructions to any or all of the three function units.

The AGEN performs modulo addressing of 8 distinct regions of data located nearly
anywhere in external physical memory and of any size. Within each region can be defined
numerous delaylines whose region address offsets are determined by the multiplicity of
AORs employed by AGEN. AGEN features include a Plus-One addressing mode, and
UPDATE of the region BASE under program control. The AGEN can also perform
absolute addressing as would be required for peripheral I/O.

1.1.2. Internal Registers.
Operand addresses are 10 bits allowing up to a total of 1024 internal registers. This
register space is apportioned as follows:

Table 1. Internal Register Address Map

$000 - $1c7 General Purpose Registers (GPRs)

 10

$1c8 - $1ff Special Purpose Registers (SPRs)
$200 - $3c3 Address Offset Register (AORs)
$3c4 - $3ff Special Purpose Register (SPRs)

The ESP2 instruction set operates directly on these registers given meaningful names by
the programmer.
The MAC unit (with one restriction) and ALU can utilize all the registers as operands.

 11

1.1.3. GPR and AOR
GPRs (General Purpose Registers) and AORs (Address Offset Registers) are 24-bit wide
registers implemented as large dynamic ram arrays. GPRs and AORs have two read ports
and one write port. Each of the ports is accessed twice per instruction cycle. This gives a
virtual set of four read ports and two write ports per instruction cycle for each of the
arrays.
The GPR read ports allow two operand fetches for the ALU and two for the MAC unit in
an instruction cycle. The two GPR write ports allow one result-write by the ALU and one
by the MAC unit.
The AOR array is used to hold address offsets for the AGEN. When not used for holding
address offsets, AORs may be used just like GPRs. The four AOR read ports allow one
offset fetch for the AGEN, one operand fetch for the MAC unit, and two operand fetches
for the ALU. The two write ports of the AOR allow one result-write by the ALU and one
by the MAC unit.
Host access to GPR and AOR is governed by the ALU.

Because these registers are dynamic RAM they must be refreshed to maintain the data.
The mechanism for refreshing these registers is somewhat transparent and built into the
instruction set. GPR and AOR power-up in their lower power state; i.e., when these
registers read as logical 1, they are in their lower power consumption state.

The address map allows 456 GPRs and 452 AORs. Due to die size limitations, it is not at
first planned to include all of these registers. The initial revisions will have 256 GPRs and
256 AORs.

1.1.4. SPR
SPRs (Special Purpose Registers) are static registers for holding data specific to a
particular operation of a function unit, for interfacing to the external ports of the chip, for
controlling certain operating modes, or for chip hardware configuration and status.
Internal chip control and status registers, such as the Program Counter (PC) or the
Condition Code Register (CCR), are mapped as SPRs to provide access via the system
host. Host access to SPR is governed by the ALU.

All the function units (ALU, AGEN, MAC) have supporting SPRs. In some instances, one
or several SPRs effectively behave as extra source/destination operands to a particular
function unit. Unless stated otherwise, these extra source/destination SPRs are subject to
the same inter-unit latencies as any conventional source/destination register. (See the
section on Inter-Unit Latency.)

SPRs are accessible as operands in all of the same modes as GPRs, although some of the
SPRs are read-only. SPRs are distributed over the GPR and AOR address space so as to
balance the number of GPRs against the number of AORs.

 12

1.1.5. Internal Register Usage
The rules governing the use of the three types of registers as operands for the three
function units are indicated in Table 2. (The symbol * in Table 2 denotes a valid usage.)
Notice that an AOR is not a valid E source operand in the MAC unit because one of the
AOR's four virtual read ports is usurped by AGEN.

 Table 2. Registers as Operands

 ALU MAC unit AGEN

GPR
AOR
SPR
Buss
Source
Destination

A
*
*
*
X
*

B
*
*
*
Y
*

C
*
*
*
Z

*

D
*
*
*
X
*

E
*

*
Y
*

F
*
*
*
Z

*

G

*

W
*

1.1.6. Instruction Memory

The instruction memory is presently a 300 by 96-bit dynamic memory array. These 300
ESP2 instructions are equivalent to 900 instructions of a more conventional architecture
because of the three parallel function units that constitute the ESP2. Future expansion
sets the maximum possible number of ESP2 instructions at 1024 (3072 conventional). At a
sample rate of 44.1 kHz and using a system clock of 40 MHz, ESP2 can execute 226
instruction cycles (678 conventional) per sample period.

The instruction memory cell has one write port and one read port and cycles at twice the
instruction rate. This allows one cycle for instruction fetching, and a read/write cycle for
refresh or host access to the instruction memory array. Refresh of instructions is
transparent to the programmer. Instruction memory powers-up in its lower power state;
i.e., when instruction memory reads as logical 1, it is in its lower power consumption state.

Instruction memory can be downloaded, overlaid, or uploaded by the system host at any
time at the instruction rate. This is because the host interface is dichotomized between
internal register and instruction memory.

1.1.7. Future Expandability
It should be possible to shrink the chip to denser process geometries. This would improve
performance by allowing operation at higher clock rates. Since the chip is designed with a
10-bit Program Counter and 10-bit operand (address) fields, we can add GPR, AOR, and
instruction memory with minimal layout effort.

1.1.8. Internal Operand Busses

The ESP2 contains four 24-bit data busses, W, X, Y, Z. The X and Y busses are
time-multiplexed for fetching ALU and MAC unit source operands. These busses connect
to the GPR memory array, the AOR memory array, the ALU, the MAC unit, and to all
SPRs. The source register (GPR, AOR, or SPR) specified as the ALU's A operand is
always fetched on the X buss, as is the MAC unit's D source operand. The register (GPR,
AOR, or SPR) specified as the ALU's B source operand is fetched on the Y buss. The
register (GPR or SPR, but no AOR) specified as the MAC unit's E source operand is
fetched on the Y buss as well. The AOR addressed as the AGEN's G source operand is
fetched on the W buss. The Z buss is used to deliver results to the registers (GPR, AOR,

 13

or SPR) designated by destination operands, C and F, from the outputs of the ALU and
the MAC unit respectively.

The MAC unit and ALU share the X, Y, and Z busses by relinquishing their use on
different phases of the same instruction cycle. Instruction Cycle Timing is covered in the
section of the same name.

 14

1.1.9. External Interfaces
There are four mechanisms for interfacing to external memory and devices: the external
memory interface, the serial interface, the host interface, and chip synchronization.

The external memory interface is a 24-bit address, 24-bit data buss for random access
of delaylines and tables stored in external memory. This external memory buss can
also be used to access memory-mapped I/O devices. Addresses for this buss are calculated
on every instruction cycle by the AGEN, under program control. The code which drives
AGEN can be generated automatically for the programmer by the assembler, if desired.
The DIL (Data Input Latch) and DOL (Data Output Latch) SPRs provide the interface to
the external memory data buss for incoming and outgoing data as they are accessed as
normal sources and destinations of instructions, under program control. The external
memory buss cycles at the instruction rate.

The serial interface consists of 8 serial stereo data lines. Each of the lines can be
configured as input or output. There are two fully programmable sets of clocks for
controlling the timing of data transfers on the serial data lines, and each data line can be
assigned to either set of clocks. The serial clocks may be disabled to allow exogenous
devices to dictate the serial timing. The SER data SPRs (e.g., SER0L) provide the
interface to incoming and outgoing serial audio data as they are accessed as normal
sources and destinations of instructions, under program control.

The asynchronous host interface offers an 8-bit data exchange on the host side, but 24-
bit on the ESP2 internal register side. It is described more fully in the later section,
Host/ESP2 Interface. The host/ESP2-register interface timing internally parallels that of
the ALU; the system host transfers data to/from GPR/AOR/SPR registers using normal
ALU data paths (the Y and Z busses). Transfers are completely under ESP2 program
control, however, the exact time of the register transfer governed by the ALU HOST and
BIOZ instructions. The host will not hang waiting for an acknowledge because built-in
semaphores are polled by the host. When the chip is halted, it continually executes HOST
instructions by design.
Instruction memory is always accessible to the system host at the instruction rate
regardless of the state of the chip. Instruction memory access does not usurp internal
chip resources because there is a dedicated 96-bit buss for this purpose (8 bits wide on the
host side).

The chip synchronization interface includes the IOZ input pin, the IFLAG input pin,
the OFLAG output pin, and the RES\ (reset) pin:
The IOZ input pin is most often tied to the system sample rate signal called LRCLK. This
signal is asynchronous and comes from any desired source including the ESP2 chip itself.
The IOZ pin is indirectly monitored by the ALU BIOZ instruction to synchronize the
running ESP2 program to the sample rate.
The IFLAG input pin is uncommitted and can be used for any desired purpose. Its
intended purpose is for use as a semaphore in a rapid-transfer DMA scheme. It is visible
through the CCR in the ALU as IFLG. Other transfer schemes to external memory are
discussed in the Applications section.
The OFLAG output pin is also uncommitted and can be used for any desired purpose. It is
connected to the OFLG bit in the HARD_CONF SPR.
The RES\ pin impact is discussed in the Chip Reset and Initialization section. It can be
used in a multi-processor environment to initially synchronize several ESP2 chips running

 15

in parallel. (Provision has been made in the external memory interface for sharing
external memory.)

 16

1.2. Instruction Cycle Timing

MAC unit

ALU

AGEN

external

X/Y

Z buss

n-1
sources

1 2 3 4 1 1 12 2 23 34 4

inst n-1

inst n-1

inst n-1

inst n-1

inst n

inst n

inst n

inst n

inst n+1

inst n+1

inst n+1

inst n-2

MAC
n-1

ALU

ALU

ALU

ALU

ALU

ALU ALU

MAC MAC MAC

MACMACMAC
n-1 n-1

n n

n n

n+1 n+1

n+1 n+1

n+2

n-2
dest. dest. dest. dest. dest. dest. dest.

W buss n-1
AOR

AGEN
n n+1 n+2

AGEN AGEN AGEN

memory

busses

DIL/DOL n-2
DOL

n-2
DIL

n-1
DOL

n
DOL

n+1
DOL

n-1
DIL DIL

n

sources sources sources sources sources sources

n-1
sources

AGEN
n n+1 n+2

AGEN AGEN

sources sources

AGEN

sources

n-1

BASE
UPDATE

n

BASE
UPDATE

n+1

BASE
UPDATEcontrol registers

(extra sources = SIZEM1, BASE, END)

access

Tstate

AOR AOR AOR

region

source source source sourcedest. dest. dest.

n n+2n+1PC value n-1

AGEN SPRs

 Figure 2. Instruction Cycle Timing diagram

 17

All ESP2 instructions execute in one instruction cycle. The Instruction Cycle Timing
diagram shown in Figure 2 illustrates the relative timing of instruction execution for each
of the function units (MAC, ALU, AGEN), and their timing relationship with the access to
external memory. Notice that the external memory access lags the AGEN instruction
requesting it.

The access to internal source/destination operands is also indicated. Execution timing in
the MAC unit and ALU are interleaved to allow four operand-fetches and two operand-
stores by multiplexing the X, Y, and Z busses. By operating these busses at twice the
instruction rate, the MAC unit and ALU can each be supplied with two source operands
from GPR/AOR/SPRs and have their results stored back into GPR/AOR/SPRs on every
instruction cycle.

1.3. Latency

There are five categories of execution latency due to the internal pipeline architecture:
1)inter-unit, 2)external memory access, 3)ALU instruction cycle execution, and 4)serial
data access, 5)pointer register access for indirect register addressing. The last three
categories are discussed in the pertinent sections. With few exceptions, when latencies
arise, the latency across the categories is one instruction cycle. This regularity makes for
a highly orthogonal design.

1.3.1. Inter-Unit Latency
The interleaving of the MAC unit and ALU timing produces some latency in the
availability of the result of the ALU instruction with respect to the MAC unit instruction.
As illustrated in Figure 2, the MAC unit fetches its source operands for the (n+1)th queued
instruction before the ALU has stored operation results to its destination from the nth
instruction. Similar latencies arise between the AGEN and the ALU since the AGEN
fetches are coincident with those of the MAC unit. The AGEN source operands (which
include the AOR (address offset), and BASE, SIZEM1, and END region control registers)
are acquired at the beginning of an instruction cycle, while there is an optional UPDATE of
the region BASE at the end of the cycle.

1.3.2. Latency of External Memory Access via AGEN
AGEN must calculate an address during one instruction cycle while the external memory
access at that address physically takes place during the next instruction cycle. The
external memory data-interface registers, the SPRs called DILs and DOLs, look like any
other register to the MAC unit and ALU. In the case of external memory reads (RD), this
pipeline design requires the assembler to schedule a RD at least two instruction cycles
before the data is actually supplied to the ALU or MAC unit via DIL (Data Input Latch).
In the case of external memory writes (WR), the pipeline delays the usage of the MAC
unit and ALU results written out via DOL (Data Output Latch). The pipeline design
allows a WR from the MAC unit to external memory to be scheduled as early as the same
instruction cycle as the MAC unit instruction which requested it (or any time thereafter). But
the pipeline design allows a WR from the ALU to be scheduled no sooner than one
instruction cycle after the requesting ALU instruction.

 18

The following manifest quantifies the inter-unit latencies and the AGEN scheduling rules:

The interleaving of the MAC unit and ALU operations and the alignment of the AGEN
timing with the MAC unit timing have important ramifications from a programming point
of view. The following rules summarize the register data access latencies between
function units.

Nonlatent operations

 1. The result of a MAC unit operation is available for use as a source operand by

the MAC unit no sooner than the next instruction cycle (next queued program
line).

 2. The result of a MAC unit operation is available for use as a source operand by

the ALU no sooner than the next instruction cycle.

 3. The result of an ALU operation is available for use as a source operand by the

ALU no sooner than the next instruction cycle.

 4. The result of a MAC unit operation written to an AOR or AGEN region control

register is available to the AGEN no sooner than the next instruction cycle.

Latent operations

 5. The result of an ALU operation is available for use as a source operand

by the MAC unit no sooner than the second instruction cycle following the
ALU instruction.

 6. The result of an ALU operation written to an AOR or AGEN region control

register is available to the AGEN no sooner than the second instruction cycle
following the ALU instruction.

The scheduling of DIL/DOL RD/WR from/to external memory, relative to the timing of
MAC unit and ALU operand access, follows these rules:

Alatent operation

 7. External memory writes of MAC unit results to DOL can be scheduled on the

same program line (or on any line thereafter) as the instruction which generates
the data.

Nonlatent operation

 8. External memory writes of ALU results to DOL can be scheduled no sooner

than one instruction cycle after the instruction which generates the data.

Latent operation

 9. The fetch of data from external memory for use by either the ALU or the MAC

unit as a DIL source operand must be scheduled at least two instruction cycles
prior to the sourcing instruction.

 19

For a nice programmer's chart, see the ESP2 Language and Software Specification in the
Pipeline section.

 20

2. Multiplier/Accumulator/Shifter

2.1. Architecture

24 X 24 bit Multiplier

52 bit Accumulator

MAC latchMAC Preload latch

4 to 1 MUX

60 bit left/right Barrel Shift

Overflow Detect Logic

output to Z buss

X buss Y buss

Z buss

X or Y busses

MACZERO

MAC Result Low latch

X or Y busses

49 (sign extended to 52)

52 LSB

48 LSB

52

52

60

24 MSB

48 LSB

24 LSB

left shift 1

48

52

52 (sign extended to 60)

D E

(MACP) (MAC)

(MACRL)
available as input from

F operand

2 x 24 loadable via

available as input from

(MACZ)

(2 x 24)

Figure 3. MAC unit architecture. Bold buss shows first half instruction cycle.

 21

The multiplication unit is shown in Figure 3. It consists of a 24 by 24-bit signed
multiplier, a 52-bit accumulator, a 60-bit left/right arithmetic Barrel Shifter, overflow
detect logic, a 4 to 1 MUX and latches. The multiplier sources are fetched on the X and Y
buss from registers specified by the D and E operand fields of the instruction. Since the
48-bit product of the 24 by 24-bit fixed-point multiply has two sign bits, a fixed normalizing
shift left of 1 bit is designed permanently into the product path. The accumulator adds or
subtracts the left-shifted multiplication product, having appended 3 bits of sign extension,
to the 52-bit value from the feedback path (bold buss). This allows 4 guard bits for use in
detecting overflow in the accumulated result. The accumulator result can then be
selectively stored in the MAC latch, or out to a destination, or both. (The symbol labeled
'ACCUMULATOR' has no internal output latch.)

During the first half of an instruction cycle, when the right-side accumulator input is being
loaded, the 4 to 1 MUX will select one of three seed sources; either the MAC latch, the
constant MACZERO (MACZ), or the MAC Preload latch (MACP). These three input
options allow:
1) accumulation of the multiplier product with the MAC latch,
2) multiplication without accumulation,
3) accumulation of the multiplier product with a sign-extended (to) 52-bit Preload value
(MACP).

Positioning the Barrel Shifter in the feedback path allows shifting of the MAC or MACP
latch seeds prior to accumulation.

In the second half of the instruction cycle, there are four destination options:
1) 24 MSBs of the double precision accumulator can be written out to a single precision
destination register (via the Z buss), and not to the MAC latch,
2) to a single precision destination register, and 52-bits to the MAC latch,
3) double precision shifted to a single precision destination register, but not shifted to the
52-bit MAC latch,
4) double precision shifted to a single precision destination register, but not shifted and
not to the MAC latch.
The accumulator result must propagate through the 4 to 1 MUX, the 60-bit shifter, and
the overflow detect logic to the reach the Z buss for writing to a destination register. The
shifter and overflow detect logic must be separate so that only the final result of a series
of intermediate multiply/accumulate/shift operations becomes conditionally saturated
before being written to a destination.

The Barrel Shifter always performs a 60-bit arithmetic shift of 0 to 8 bits left or 0 to 7 bits
right. The instruction contains only one shift amount, and the shifter can be used to shift
the accumulator right-side input or the accumulator output to a destination register, but
not both in the same instruction cycle.

The sign extension to 60 bits of the 52-bit MUX output is required because of the
maximum possible shift left of 8 bits. The overflow detect logic checks the 13 MSBs of the
60-bit shifter output for overflow. Overflow exists if those 13 bits are not all in the same
state. When overflow has occurred the MAC unit output is saturated to either most
positive $7FFFFF,FFFFFF if the MSB of the shifter input is a 0, or most negative
$800000,000000 if the MSB of the shifter input is a 1. Conditional saturation occurs only
at the MAC unit output; there is no saturation of intermediate accumulator results stored
in the MAC latch.

 22

Neither is there any saturation of the left-shifted MAC or MACP latch when used as the
accumulator seed input. But when the left-shifted MAC or MACP is used as an
accumulator input and then the conditionally saturated result is sent to a destination
register, it is possible to detect overflow of these two seed inputs if the overflow is not in
excess of 4 bits. This reduction in overflow detection capability for shifts left of the MAC
and MACP latch inputs is because of truncation on the feedback path in the MAC unit.

 23

2.1.1. Exception Processing
There are two special cases that must be handled by the MAC unit:

 Table 3. Multiplier Exceptions

 MAC latch Destination: F,MACRL
 $800000 X $800000 = $0,800000,000000 = $7FFFFF,FFFFFF
-$800000 X $800000 = $f,800000,000000 = $800000,000000

2.2. MAC unit Barrel Shifter
The Barrel Shifter residing within the MAC unit performs only arithmetic shifts. The
Barrel Shifter performs two functions:
1) It can be used on the accumulator output path to perform a shift of +8 (left) to -7 bits
of the 52-bit accumulated sign-extended (to 60 bit) result.
2) The Barrel Shifter can be applied to the MAC latch as seed-source, or to Preload
values in the MACP latch as seed-source, for double precision shifting by +8 to -7 bits.

If it is desired to examine the 4 MAC latch guard bits, this can be done by first right-
shifting them in place back into the MAC latch. They can then be examined by sourcing
directly from the MAC latch (the SPR MACH).

ASSEMBLER NOTE: The shift code stored in the instruction is an unsigned 4-bit value.
The value is derived by the following equation:
 Shift code = desired shift amount + 7
Since the desired shift amount is in the range from +8 to -7 bits, the result of the Shift
code equation falls into the range 0 to 15.

2.3. Accessing the MAC unit
The MACP latch is accessible as two pairs of 24-bit write-only SPRs: MACP_H and
MACP_L, and MACP_HC and MACP_LS. The ESP2 assembler generally disallows any
reference to MACP as a source operand which is not the seed source in the MAC unit.
When MACP is used as a single precision destination, this is synonymous with the SPR,
MACP_HC.

The unsaturated MAC latch is directly accessible as a pair of 24-bit read-only SPRs,
MACH and MACL, for use as source operands in the ALU or MAC unit with normal
latencies. From the ALU, using the MAC latch as a destination is disallowed by the
assembler. When MAC is used as a single precision source operand, this is synonymous
with the SPR, MACH.

 24

2.3.1. Writing the MACP (Preload) latch
MACP is used in accumulation, instead of the MAC latch or MACZ, under control of the
program. The MACP latch is nonvolatile and will retain a value written to it until written
again. Because of the interrelationship between the ALU and MAC unit instruction
timing, the value written by the ALU into the high or low-order bits of MACP during the
nth instruction line will be available for accumulation 2 instruction cycles later at the (n +
2)th queued instruction line. The MAC unit can also initialize the high or low-order MACP
latch, just as it can load any other SPR. In this case, MACP is available to the MAC unit
on the next instruction cycle. The ALU and the MAC unit can be used in conjunction to
initialize the full 52 (high and low-order) bits of the MACP latch.

When the SPRs, MACP_H or MACP_L, are written, the 24-bit value is written into the
indicated half of the MACP latch.

When the SPR, MACP_HC, is written, 24 bits are written into the high-order half of the
MACP latch while the low-order half is cleared to all zeros. When SPR, MACP_LS, is
written, the 24-bit value is written into the low-order half of MACP while the high-order
half is written with the sign-extension of the value in the low-order half. These allow
MACP initialization to the full 52-bit accumulator width in one instruction cycle.

Any write to the high-order half of the MACP latch is sign-extended into the 4 guard bits
to create a full 52-bit word.

2.3.2. Reading the MAC latch
Since the MAC latch is located before the overflow detect in the circuit topology, values
read from the MAC latch (using the MAC unit SPRs, MACH and MACL, as sources) will
not be conditionally saturated. Our intention was to provide unsaturated MAC unit
results as source operand for the MAC unit itself as well as for the ALU.

Also note from observation of the fundamental instructions, that the MAC latch will be
unshifted with regard to the last executed MAC unit instruction if it was not of the form:
 MAC(P) >>n +/- D X E > MAC(,F)
That is to say for many instructions, the MAC unit output is shifted but the MAC latch
acting as extra destination is not.

2.3.3. MAC Result Low latch (MACRL)

Examination of the fundamental MAC unit instructions shows that the MAC unit has a
destination on every instruction cycle. If the programmer does not specify one, the
assembler chooses the read-only ZERO SPR as the destination. On every instruction
cycle, the low 24 bits of the conditionally saturated MAC unit output will be written to the
MAC Result Low latch because it is in the output path. Since MACRL is mapped as an
SPR, it is readable by the MAC unit and ALU as a source operand. Storing the low word
allows double precision arithmetic using all 48 bits of the final result out of the MAC unit.
It is necessary to read the MAC Result Low latch before it is overwritten by the MAC unit
in the next instruction cycle. The only exception is when the MAC unit is executing NOPs
in which case the contents of MACRL will be preserved (see the MAC unit NOP pseudo
instruction).

 25

2.4. MAC unit Instructions
The fundamental instructions executed by the MAC unit are two-source one-destination
instructions, having an optional seed source and an optional MAC latch destination, of the
form:

 (MAC(P)) +/- D X E > (MAC,)F

When a seed source is not specified, the assembler inserts MACZERO (MACZ). The D and
F operands can be any GPR, SPR, or AOR. The E operand can be any GPR or SPR. The F
operand acts as the register-type destination. At least one of the two destinations must
be specified by the programmer.

When the only destination specified is MAC, the assembler substitutes the read-only SPR
called ZERO for the F operand. Unsaturated results of the accumulation are stored in the
MAC latch (the SPRs: MACH, MACL) for use in subsequent accumulations.

When the only destination specified is F, the MAC latch is inhibited as a destination. This
inhibition is a means to preserve the previous MAC latch contents.

Table 4 lists the fundamental instructions of the MAC function unit:
(Parenthesis not required; it only serves to clarify the operation.)

Table 4. MAC unit List of Instructions

 MACZERO + D X E > MAC >>n
 MACZERO - D X E > MAC >>n
 MACZERO + D X E >>n
 MACZERO - D X E >>n

> F
> F
> F
> F

 MAC + D X E > MAC >>n
 MAC - D X E > MAC >>n
(MAC + D X E) >>n
(MAC - D X E) >>n

> F
> F
> F
> F

 MAC >>n + D X E
 MAC >>n - D X E
 MAC >>n + D X E
 MAC >>n - D X E

> MAC, F
> MAC, F
> F
> F

 MACP + D X E > MAC >>n
 MACP - D X E > MAC >>n
(MACP + D X E) >>n
(MACP - D X E) >>n

> F
> F
> F
> F

MACP >>n + D X E
MACP >>n - D X E
MACP >>n + D X E
MACP >>n - D X E

> MAC, F
> MAC, F
> F
> F

In six of the instructions in Table 4, notice the MAC latch gets the unshifted unsaturated
result while the destination operand, F, gets the shifted and conditionally saturated
result. In four other cases, the MAC or MACP latch as seed source is shifted, but the
MAC latch as extra destination remains unsaturated. But in all cases, the destination, F,
receives the shifted and conditionally saturated result. The shift amount n, as specified

 26

in Table 4, can be +7 to -8 bits; specified as <<n it can be -7 to +8 bits. The shift amount
n is a constant expression that is encoded into the micro-instruction word.

 27

2.5. MAC unit Pseudo Instructions
The MAC unit pseudo instructions are designed to preserve the MAC latch where
possible. Therefore most pseudos do not provide MAC as a destination. Note that the
MAC latch is neither a valid destination from the ALU (but MACP is).
Generally speaking, only the MAC unit pseudo, NOP, preserves MACRL.

ADD D, MAC > MAC, F = MAC - D X MINUS1 > MAC, F ! destination is MAC or F

or both
ADD D, MAC > MAC >>n > F = MAC - D X MINUS1 > MAC >>n > F
ADD D, MAC = MAC - D X MINUS1 > MAC
ADD D, MAC >>n > MAC = MAC >>n - D X MINUS1 > MAC

ADD D, MACP > MAC, F = MACP - D X MINUS1 > MAC, F ! destination is MAC or F

or both
ADD D, MACP > MAC >>n > F = MACP - D X MINUS1 > MAC >>n > F
ADD D, MACP = MACP - D X MINUS1 > MACP
ADD D, MACP >>n > MAC = MACP >>n - D X MINUS1 > MAC

The MAC latch as a destination is unsaturated, double precision. MACP as destination is
single precision, conditionally saturated.

ASH D >>n > F = - D X MINUS1 >>n > F
ASH some_reg >>n = - some_reg X MINUS1 >>n > some_reg

This pseudo instruction performs an arithmetic shift n places of the 24 bit D operand.
The value n which is encoded in the micro-instruction is the shift range; it is a constant
expression which can take any value in the range +7 to -8 bits.

ASH D >>8 > F = D X HALF >>7 > F
ASH some_reg >>8 = some_reg X HALF >>7 > some_reg

These two extra pseudo instruction definitions make the range of shift for ASH
symmetrical. Alternatively the programmer might choose the constant (HALF, MINUS1) to
be smaller (using the primitive instruction) thus extending the range of possible shifts
right even further.

In a shift right, the programmer should be aware that the MACRL SPR receives all of the
bits shifted out of the single precision D operand. This means that bits of the single
precision operand are not lost when shifted across the LSB boundary. Considering these
pseudo instruction definitions, the 48-bit concatenation, (some_reg,MACRL), will contain
all 24 of the right-shifted bits of some_reg.

PROGRAMMER NOTE: Double precision SHIFTMAC(P) pseudos or the ALU's double
precision shift instructions should also be considered. Note that the ALU's ASH pseudo

 28

instruction can not incorporate the MACRL SPR to catch the LSBs as explained here for
the MAC unit.

CLR F = MACZ + ZERO X ZERO > F

 29

DBL D > F = - D X MINUS1 <<1 > F
DBL some_reg = - some_reg X MINUS1 <<1 > some_reg

EXIT = MACZ + ZERO X ZERO > REPT_CNT

This MAC unit pseudo instruction is used to terminate a repeating block of code,
instigated by the REPT instruction, at the end of the current block. The MAC unit EXIT
pseudo instruction may be placed anywhere within a repeated instruction block except
for the last line of the block where it will not work at all. See the description of the ALU
REPT instruction and the section on SPR Hazards for more details.

HALVE D > F = - D X MINUS1 >>1 > F
HALVE some_reg = - some_reg X MINUS1 >>1 > some_reg

MOV D > F = - D X MINUS1 > F

This allows the multiplier to do a MOV from operand D to operand F. If the D operand is
MAC, then the destination will receive the unsaturated MAC latch (MACH) from the
previous queued MAC unit operation. This pseudo instruction does not preserve MACRL.

PROGRAMMER NOTE: This instruction uses the MINUS1 SPR ($800000) as the E
operand. MOV to the MAC latch is discouraged because the MACP latch fulfills any role
as preload register, and because the MAC latch is not a valid destination from the ALU.

MOVSMAC > F = MAC + ZERO X ZERO > F
MOVSMACP > F = MACP + ZERO X ZERO > F

These pseudo instructions send the double precision conditionally saturated MAC or
MACP latch to the single precision destination. If you wish to move the unsaturated MAC
latch to a destination, use the MOV pseudo instruction above or the ALU MOV
instruction.

NEG D > F = D X MINUS1 > F
NEG some_reg = some_reg X MINUS1 > some_reg

 30

NOP = MACRL X ONE >>1 > ZERO

This NOP for the MAC unit, utilizing the SPR called ONE, preserves MACRL. Since the
least significant 24-bits of the MAC unit result are always stored in MACRL, this
instruction performs a move of the MACRL SPR to itself. The MAC latch is not written,
hence it is preserved. This instruction performs no refresh.

NORFSH Identical to NOP

RFSH = - REF X MINUS1 > REF

This instruction performs a MOV using the REF SPR as source and destination registers.
See the section on GPR and AOR Refresh for details on this SPR and its use in refreshing
internal DRAM. Execution of this instruction will cause the loss of the contents of
MACRL from the previous queued MAC unit instruction.

SHIFTMAC >>n = MAC >>n + ZERO X ZERO > MAC
SHIFTMAC >>n > MAC = MAC >>n + ZERO X ZERO > MAC
SHIFTMAC >>n > F = MAC + ZERO X ZERO >>n > F

SHIFTMACP >>n > MAC = MACP >>n + ZERO X ZERO > MAC
SHIFTMACP >>n > F = MACP + ZERO X ZERO >>n > F

The SHIFTMAC and SHIFTMACP pseudo instructions perform an arithmetic shift of the
52 bit MAC latch and MAC Preload latch contents, respectively. The constant expression,
n, in the equation is the shift amount; it can take any value in the range -8 to +7 bits. If
MAC appears as a destination, it remains unsaturated, but it is shifted with double
precision. Unlike the MAC latch, the double precision MACP cannot be shifted in place,
which explains why there is no corresponding simplest form of SHIFTMACP. As always,
any result written to a destination register (including MACP) is single precision and
conditionally saturated.

PROGRAMMER NOTE: The rationale behind the definition of these pseudos is the
following:
First, we want double precision results unless a single precision destination register is
specified.
Second, consider the construct,
 MAC >>n or MACP >>n + ZERO X ZERO > MAC,F
F is conditionally saturated but not guaranteed saturated correctly in a shift left because
the MAC unit feedback path is truncated. Therefore, we can only use this construct
reliably for SHIFTMAC(P) when the only destination is MAC (F is the ZERO SPR),
because the MAC latch is never saturated.

 31

 32

SQR some_reg > F = some_reg X some_reg > F
SQR some_reg = some_reg X some_reg > some_reg

This is a short hand way of multiplying a number by itself.

ASSEMBLER NOTE: AORs cannot be squared because the MAC unit can only get one
source operand from AORs. This event should be flagged as an error for the user.

SUB D, MAC > MAC, F = MAC + D X MINUS1 > MAC, F ! destination is MAC or F or

both
SUB D, MAC > MAC >>n > F = MAC + D X MINUS1 > MAC >>n > F
SUB D, MAC = MAC + D X MINUS1 > MAC
SUB D, MAC >>n > MAC = MAC >>n + D X MINUS1 > MAC

SUB D, MACP > MAC, F = MACP + D X MINUS1 > MAC, F ! destination is MAC or F

or both
SUB D, MACP > MAC >>n > F = MACP + D X MINUS1 > MAC >>n > F
SUB D, MACP = MACP + D X MINUS1 > MACP
SUB D, MACP >>n > MAC = MACP >>n + D X MINUS1 > MAC

The MAC latch as a destination is unsaturated, double precision. MACP as destination is
single precision, conditionally saturated.

XCH some_reg1, some_reg2
 = - some_reg1 X MINUS1 > some_reg2 MOV some_reg2 >
some_reg1

The exchange instruction is a macro-pseudo instruction which uses one MAC unit
operation and one ALU operation in order to exchange the contents of two registers.
During an XCH instruction, the MAC unit executes a MOV (pseudo) instruction as defined
above, while the ALU also executes a MOV instruction but in the opposite direction. Since
the operation of the MAC unit and ALU is interleaved, the register contents are swapped
using fewer instructions than either function unit acting alone would require.

The complete results are discernible to the ALU on the next instruction cycle, but due to
inter-unit latency, only some_reg2 is discernible to the MAC unit on the instruction cycle
following the exchange; there, some_reg1 still holds its original contents. On the second
instruction cycle following the exchange, the complete results are discernible to the MAC
unit.

ASSEMBLER NOTE: An XCH specified in the MAC unit instruction field employs both the
MAC unit and the ALU, therefore no ALU operation can be specified on that instruction
line.
A warning should be issued if indirection is specified because to work properly, the
programmer must have set up the INDIRB and/or INDIRC SPRs in the ALU, while it is

 33

the INDIRD and/or INDIRF (not INDIRE) SPRs which must have been set up in the MAC
unit.

 34

3. ALU and Instruction Set

The Arithmetic Logic unit can perform a variety of general and special purpose
arithmetic, data movement, and logical operations. It incorporates classical
zero-overhead saturation arithmetic for handling computational overflow, and can shift
double precision signals to the left or right for the purpose of normalization. Instructions
exist to perform unsigned arithmetic without saturation.

During every instruction cycle the ALU takes one or two 24-bit source operands and
produces a 24-bit result which is sent to a (third) destination register. ALU execution
overlaps with the operation of the MAC unit, so the two computation units operate in
parallel. Detailed description of the ALU and MAC unit execution cycles may be found in
the section on Instruction Cycle Timing.

The instructions executed by the ALU are three-operand instructions of the form:

OPERATION A, B > C

The source A and B operands can be any GPR or SPR or AOR. The C operand is the
destination and it can also be any internal register. Since external memory access takes
place via the interface SPRs called DIL and DOL, the available operands virtually include
external memory data.

Some of the instructions that follow (especially program control instructions) do not use
all of the three available operands. Some of the instructions store data in the operand
(address) fields themselves. Directions have been included showing how the assembler
should regard the operands and operand fields of those instructions.

The mnemonic ZERO, used often as an operand, refers to the read-only SPR whose
content is zero.

 35

3.1. ALU Instructions
 These are the fundamental instructions of the ALU:

 ADD is a saturating 2's complement addition operator used to create the sum of

two signals. If the sum cannot be represented in 24 bits, full-scale positive
($7FFFFF) or full-scale negative ($800000) is substituted for the overflowed result.
The operation performed is:

 C = A + B

 ADDC Add with carry is a 2's complement saturating addition operator like

ADD, but the carry bit in the Condition Code Register (CCR) is added at the LSB.
This is valuable for double precision arithmetic. The operation performed is:

 C = A + B + carry

When the ADDC instruction is used in conjunction with a preceding ADDV to
perform double precision arithmetic, the ADDC operation can saturate the high
24-bit word of the 48-bit result. Since the low 24-bit word was computed in the
preceding ADDV operation, its value will not be conditionally saturated. The low
word of the result can be adjusted by the following conditional operation:

 ADDV a_low, b_low > c_low
 ADDC a_high, b_high > c_high
 IF OV
{XOR MINUS1, c_high > c_low}

(See the section on ALU Pseudo Instructions for the IF pseudo, and see the
section on Setting Condition Codes for information on the V flag.)

 PROGRAMMER NOTE: Since conditionally executed instructions never modify

the Condition Code Register, a double precision addition using the ADDC
instruction will not execute properly if the preceding ADDV is conditionally
executed {}.

 ADDV is an unsaturating addition operator. It operates exactly as ADD, except

that it lacks overflow detection. For this reason it is not normally used to add
signals together, unless the signals are double precision. However, it can be used
for generating ramp signals, for performing unsigned address arithmetic, and for
double precision arithmetic. It performs the operation:

 C = A + B

 36

AMDF This instruction first subtracts the operands as B - A with conditional
saturation, and then takes the (one's complement) absolute value of the result.

Equivalent Pseudo-code:

if (B - A) < 0 then C = (B - A) ^ $FFFFFF /* exclusive OR */
else C = B - A

This implementation employing the exclusive OR operation, instead of negation,
yields the absolute value of negative numbers which are off by 1, making the
magnitude of the destination smaller by one LSB of a 24-bit word in two's
complement. This instruction is typically found in pitch detection applications
where this error is insignificant. If the error needs to be corrected however, then
the state of the N flag in the CCR can be monitored.

 AND performs the bit-wise logical AND of the two 24-bit operands:
 C = A & B

 AS performs an arithmetic shift of B by the contents of A using destination C.

Saturation will occur if any of the bits shifted left through the MSB differ from the
original sign bit. The shift amount is restricted to the range of +8 to -8 bits.
Positive values correspond to left shifts and negative values correspond to right
shifts. Zeros enter the LSB during left shifts and the sign enters the MSB during
right shifts. (See the ASH pseudo.)

 37

ASDH Arithmetic Shift Double High performs a double precision arithmetic shift
using the B operand as the high word and the A operand as the low word of a 48-bit
input. Saturation will occur if any of the bits shifted left through the MSB differ
from the original sign bit. The shift amount for this operation comes from the
ALU_SHIFT SPR and its range is restricted to +8 through -8 bits as in the AS
instruction. Zeros enter at the low-word LSB in a left shift, and the sign enters at
the high-word MSB in a right shift. The result is the high 24-bit word of the
conditionally saturated 48-bit shift output.

ASSEMBLER NOTE: Switch the operands on this instruction so that ASDH
gpr1,gpr2 gets assembled as gpr2 being the A operand and gpr1 being the B
operand. This allows the two halves of a double precision word to appear in proper
order. In this particular example, gpr2 is the destination (the C operand).

PROGRAMMER NOTE: See the assembler note above. This switch of the
operands hobbles indirection. To indirect on gpr1 the programmer must write to
INDIRB, and vice-versa. The programmer must always use the verbose form of the
instruction explicitly declaring the destination to successfully implement
indirection.

 ASDL Arithmetic Shift Double Low performs a double precision arithmetic shift

using the B operand as the high word and the A operand as the low word of a 48-bit
input. The shift amount for this operation comes from the ALU_SHIFT SPR and
its range is restricted to +8 through -8 bits as in the AS instruction. Zeros enter at
the low-word LSB in a left shift, and the sign enters at the high-word MSB in a
right shift. The result is the low 24-bit word of the 48-bit shift output.

The ALU performs this and the ASDH instruction by intelligently extracting a 32-
bit field from the 48-bit input based on shift direction and whether the low or high
word is the desired result. When the low word is desired, the MSBs of the input
are lost before the shift and are, therefore, not available for detecting overflow
during a shift.

ASSEMBLER NOTE: Switch the operands on this instruction so that ASDL
gpr1,gpr2 gets assembled as gpr2 being the A operand and gpr1 being the B
operand. This allows the two halves of a double precision word to appear in proper
order. In this particular example, gpr2 is the destination (the C operand).

PROGRAMMER NOTE: See the assembler note above. This switch of the
operands hobbles indirection. To indirect on gpr1 the programmer must write to
INDIRB, and vice-versa. The programmer must always use the verbose form of the
instruction explicitly declaring the destination to successfully implement
indirection.

 PROGRAMMER NOTE: The result of this instruction will saturate to $FFFFFF or

$000000 when the V flag in the Condition Code Register is true from the previous
queued ALU instruction. The direction of overflow will be determined by the N
flag of the Condition Code Register from the previous queued ALU instruction.

 38

The N and Z flags will then be set based on the 24-bit result from this instruction,
the V flag will not be modified.

 If the saturation feature is undesirable, use the LSDL instruction instead.

PROGRAMMER NOTE: Since conditionally executed instructions never modify
the Condition Code Register, a double precision shift using the ASDL instruction
will not conditionally saturate reliably based on the previous queued ALU
instruction if that previous instruction is conditionally executed {}.

 39

 AVG takes the average of two operands:
 C = (B + A) >>1
 The guard bit of the addition result is included in the shift, therefore overflow is

not possible. This means that two full scale signals may be used as inputs without
a saturated result. Often used for stereo to monophonic signal conversion.

PROGRAMMER NOTE: The operation, (B - A) >>1 , can be coded using the AVG
instruction as follows:

AVG somereg_a, somereg_b > somereg_c
SUB somereg_a, somereg_c > some_other_reg

This method stores (B+A) >>1 in somereg_c. This method also avoids the
possibility of saturation in the intermediate result that could occur in the more
obvious coding that follows:
SUB somereg_a, somereg_b > somereg_c
AS #-1, somereg_c > some_other_reg

 40

BIOZ is a sample-rate synchronization instruction which conditionally sets the
BIOZ bit in the HOST_CNTL register. A high BIOZ bit suspends the chip. The
BIOZ bit is set when this instruction is encountered and the IOZ status bit of the
HOST_CNTL register is found low. The chip will stay in a state of suspension
while the IOZ status bit remains low. Execution will resume when the IOZ status
bit is set, for then the BIOZ bit will be automatically cleared. If the IOZ status bit
is set before the BIOZ instruction is encountered, then the BIOZ bit cannot go
high, hence no suspension will occur. The IOZ status bit is automatically set by a
low to high transition of the IOZ input pin while the IOZ_EN bit in the
HOST_CNTL register is high. The IOZ pin is an asynchronous input which is
synchronized to the instruction cycle by the synchronization interface. It is most
often tied to the sample rate signal called LRCLK (which is also allowed to be
asynchronous with regard to serial data transfer I/O).

Taking the IOZ_EN bit low will disable the detection of subsequent IOZ input pin
transitions, hence disabling the subsequent setting of the IOZ status bit, and will
therefore hold the chip in BIOZ suspension indefinitely (assuming that a BIOZ

instruction was encountered in the running program). If IOZ_EN goes low after the IOZ
status bit was set, the subsequent BIOZ instruction will observe a high IOZ status
bit. Hence, indefinite suspension will occur the next time around. When IOZ_EN
is again set high, the next low to high transition on the IOZ pin sets the IOZ status
bit.

All this can be more easily understood by observing the schematic below:

D R

D R

5V

BIOZ bit

IOZ pin

IOZ_EN

IOZ status bit

BIOZ instr.

Q

Q

D R Q 5V
'74 Q

_

Figure 4

The IOZ status bit appears in the CCR, the HOST_CNTL interface register, and in
HOST_CNTL_SPR. The BIOZ instruction automatically monitors the bit which
appears in the CCR and which is updated on a per instruction basis. Unlike the
IFLAG pin, nowhere does an image of the IOZ input pin exist. The system host
has read/write access to the IOZ status bit, the IOZ_EN bit, and the BIOZ bit
through the HOST_CNTL interface register.

In order to allow run-time host access to internal registers, the ALU will execute
HOST instructions but only while in suspension; as it does during chip halt (see
the section on Halt and Suspension States). The example program and its
Equivalent Pseudo-code shows that suspension is not guaranteed by the mere
execution of a BIOZ instruction. We see that the instruction cycle corresponding

 41

to the BIOZ instruction itself is used to perform one internal register refresh.
Keep in mind that all instructions in the example program are executed only once.

example program: NOP BIOZ NOP
 next queued instr.
 2nd queued instr.

 42

Equivalent Pseudo-code:

example program: NOP MOV REF > REF NOP /* BIOZ bit is always clear
coming in. */
 /* These B and C operands are supplied by the assembler. */
 if (IOZ status bit) /* Set on low to high transition of IOZ
pin. */
 clear IOZ status bit
 else
 set BIOZ bit
 execute next queued instr. /* Execution latency */
 if (IOZ status bit) {
 clear BIOZ bit
 clear IOZ status bit /* Zero it for detection of next sample
period. */
 }
 while (BIOZ bit) { /* Suspension. */
 HOST /* Auto refresh or host access. */
 /* B and C operands for HOST are supplied by the hardware as REF. */
 if (IOZ status bit) { /* Set on low to high transition of IOZ
pin. */
 clear BIOZ bit
 clear IOZ status bit /* Zero for start of next
period. */
 }
 }
 execute 2nd queued instr. /* Resume program. */

The BIOZ instruction does not always cause chip suspension. Suspension will not
occur when a program main loop equals or exceeds the sample period. BIOZ has
an instruction cycle execution latency of 1. If the chip shall enter into a state of
suspension then there is a one instruction cycle latency before so. Therefore the
instruction line queued for execution following BIOZ (which is not necessarily the

instruction line at PC value + 1 (See the section on Instruction Cycle Execution Latency.)) will execute
before the suspension becomes effective. When suspension terminates, execution
resumes with the 2nd instruction line queued for execution following BIOZ.

PROGRAMMER NOTE: If the number of instruction lines in every program main
loop is precisely equal to the sample period, this means that the BIOZ instruction
will never allow host access because the chip never goes into suspension. In this
case, the programmer must include HOST instructions elsewhere in the code if
host access is desired at run-time.
If an occasional program loop exceeds the sample period (which is allowed by the
chip synchronization interface), then BIOZ will not allow host access on that
particular loop for the same reason.

The BIOZ instruction always performs at least one refresh of internal registers as
evidenced by the first line of Pseudo-code. When the application program spends
time in suspension (in the while-loop inside the BIOZ instruction) more internal
registers are refreshed. The HALT_REF_DIS bit in the HARD_CONF SPR must

 43

be low during suspension (or halt) for the HOST instruction in the while-loop to
perform refresh when no host access is pending. During halt or suspension, the
MAC unit can be forced to do refresh, effectively doubling the refresh rate, if the
HALT_MAC_REF bit in the HARD_CONF SPR is set. This doubling comes at the
expense of the loss of the contents of the MACRL SPR (the low-order MAC unit
result from the queued instruction line executed prior to halt or suspension).

 ASSEMBLER NOTE: It is critical that BIOZ be used be perform refresh by setting
the B and C operands to the SPR called REF for the MOV operation. The A
operand is ZERO.

 44

 BREV performs a classical bit reverse operation on the full 24 bits of the B
operand. This instruction is used in a radix-2 FFT and can be used for FFTs of any
binary size up to 2**24. The usage in a loop is the same as for DREV. The
operation on the bits is as follows:

 23 > 0

22 > 1
 21 > 2

.

.

.
1 > 22
0 > 23

 The BREV instruction can also be used to reverse the order of bits emerging or
received from the serial interface data lines; e.g.,

 BREV some_reg > SER2L /* instead of MOV */

ASSEMBLER NOTE: The A operand of this instruction is a don't-care. For
consistency the ZERO SPR should be used for the A operand.

 DREV performs a digit reverse operation on the full 24 bits of the B operand.

The operation on the bits is as follows:

23 > 1
22 > 0

 21 > 3
20 > 2

 19 > 5
18 > 4
.
.
.
1 > 23
0 > 22

This instruction is used in a radix-4 FFT of any quaternary size up to 2**24.
Example of usage in a loop:

 ADDV #(2**24)/N, index ! where N = size of FFT
 DREV index > drev_index ! index = 0 -> N-1

ASSEMBLER NOTE: The A operand of this instruction is a don't-care. For
consistency the ZERO SPR should be used for the A operand.

 45

 HOST provides host access to GPR/SPR/AOR via the host interface registers.
The HOST_GPR_PEND bit of the HOST_GPR_CNTL interface register is
automatically checked by the ESP2 for a host access request. If an access is
pending, one MOV instruction is automatically executed which transfers data
between the HOST_GPR_DATA SPR and internal register memory in the
direction specified by the HOST_GPR_RW\ bit of the HOST_GPR_CNTL
interface register. The MOV executes using normal ALU timing and the standard
Y and Z busses. The address of the GPR/AOR/SPR to be accessed resides in the
HOST_GPR_ADDR1,0 interface registers. When the MOV is complete the
HOST_GPR_PEND bit will automatically clear.

 When no host access is pending, this instruction performs refresh of one of the

internal GPR/AOR registers.

 The BIOZ instruction contains the HOST instruction within it. These two

instructions provide the only mechanism for host access to internal registers at
run-time. But if the number of instruction lines in every program main loop equals
or exceeds the sample period, this means that the BIOZ instruction will never
allow host access because the chip never goes into suspension. In that case, the
programmer must include HOST instructions elsewhere in the code if host access
is desired at run-time.

 ASSEMBLER NOTE: If no host access is pending, one MOV of B to C
automatically occurs in the ALU along the normal data paths using the operands
found in the instruction. The B and C operands, then, are both the REF SPR to
perform refresh of GPRs/AORs automatically when no host access is pending. (See
also the NOP pseudo instruction.)

 The A operand of this instruction is a don't-care. For consistency the ZERO SPR
is used for operand A.

46

Jcc Conditional Jump moves the value in the B operand field of the instruction
into the PC. The A operand field of the instruction holds a condition mask which
controls conditional execution of the instruction by always unconditionally
preloading the CMR whenever this instruction is encountered. There is a 1
instruction cycle latency before the PC is modified, therefore the instruction line
queued for execution following Jcc is always executed before the jump is made.

 Conditional execution applies to all instructions. Conditional jumps are performed
by conditionally executing the Jcc instruction. If the skip bit is not set for the ALU
(i.e., no curly braces in the assembler syntax), the jump is always taken regardless
of the preloaded mask. (See the description of the Conditional Execution
Mechanism.) condition can be GT, GTE, EQ, LT, etc.

ASSEMBLER NOTE: A MOV operation executes along the normal ALU data
path. The C operand should be assigned as the ZERO SPR to insure that the
MOV is benign. The moves to the CMR and PC use special reduced-latency
hardware apart from the normal ALU data path. The A operand field of this
instruction is set to the ALW Condition Mask if not specified.

PROGRAMMER NOTE. The Jcc mnemonic is not recognized by the assembler.
Use instead:
{JMP label, condition > CMR}
 JMP label ! By default the assembler supplies ALW as the condition

 We strongly discourage the practice of modifying the PC from the ALU using any

instruction not from the JMP class (Jcc, JScc, RScc) nor REPT, such as MOV.
The reason for this is that a sequence of instructions involving MOV to PC and one
of the latent instructions, such as BIOZ for example, can have indeterminate
outcome. In that example the desired PC value, as vector, varies dependent upon
precisely how many instruction cycles the chip remains in suspension.

 JScc Conditional Jump to Subroutine executes like Jcc, except the value of the

PC for the second instruction line queued for execution following JScc (which is not

necessarily the instruction at PC value + 2 (See the section on Instruction Cycle Execution Latency.)) is
pushed onto a 4-deep hardware stack. The B operand field holds the new value of
the PC, while the A operand field holds a condition mask which always
unconditionally preloads the CMR whenever this instruction is encountered. Like
Jcc, the instruction cycle execution latency of JScc is 1, so the instruction line
queued for execution after JScc is always executed before the subroutine is
entered.

ASSEMBLER NOTE: A MOV operation executes along the normal ALU data
path. The C operand should be assigned as the ZERO SPR to insure that the
MOV is benign. The moves to the CMR and PC use special reduced-latency
hardware apart from the normal ALU data path. The A operand field of this
instruction is set to the ALW Condition Mask if not specified.

 Although the PCSTACK0,1,2,3 SPRs are writable by the MAC unit, a hazard will
occur if the MAC unit is writing to one of these registers in the same instruction
line as a JScc or RScc instruction. It is desirable to detect these events and
prevent the programmer from doing this.

PROGRAMMER NOTE. The JScc mnemonic is not recognized by the assembler.

 47

Use instead:
{JS label, condition > CMR} ! Conditional.
 JS label ! By default the assembler supplies ALW as the condition

 Unlike RScc, there is no programmer specified movement from B to the C
operand.

 Example of stack management:
 CODE /* push onto PCSTACK */
 NOP JS here
 NOP MOV #some_PC_value > PCSTACK0
 here: NOP /* any MAC/ALU/AGEN

instruction */

 48

 LIM is a special operation for checking a ramping value to a upper or lower limit.
This instruction is often used for envelope generation. It accepts a limit value as
the A operand and a ramping value as the B operand. The instruction also looks at
the NA Condition flag to determine the ramp direction. The NA flag in the CCR
holds the sign of the A operand from the previous queued ALU operation.

The instruction executes as follows:

if (NA == 0) /* If the previous A operand is greater than or equal to zero (POS)
... */
 MIN A, B > C
else
 MAX A, B > C

This instruction is typically used, for example, in a two instruction block as follows:

ADD increment, current_value > current_value
LIM limit, current_value > current_value

The ADD instruction in this example will set the NA flag with the sign of the
increment, which is the direction of the ramp.

PROGRAMMER NOTES:

 Since conditionally executed instructions never modify the CCR, the LIM
instruction in the example above will not work properly if the preceding ADD
instruction is conditionally executed {}.

 To conditionally saturate to arbitrary +/- values, use the individual MAX and
MIN instructions.

 The LIM instruction can be used to implement the Signum function (sgn()). In
the following applications the negative Signum function is produced:

 TEST A
 LIM #$7FFFFF, #-$7FFFFF > C ! no zero produced
 With another instruction, we can get the zero.
 IF NZ
 TEST A > C ! zero case
 {LIM #$7FFFFF, #-$7FFFFF > C}

 49

 LS performs a logical shift of B by the contents of A using destination C. The
shift amount is restricted to the range of +8 to -8 bits. Zero will be shifted into the
LSB or MSB depending on the direction of shift. No saturation will occur. (See the
LSH pseudo.)

LSDH Logical Shift Double High performs a double precision logical shift using
the B operand as the high word and the A operand as the low word of a 48-bit
input. The shift amount for this operation comes from the ALU_SHIFT SPR and
its range is restricted to +8 through -8 bits as in the LS instruction. Zeros enter
vacated bits in left and right shifts of the 48-bit double word. The result is the
high 24-bit word of the 48-bit unsaturated shift output.

Application example (double precision rotate left):

LSDH high, low > high
LSDH low, high > low

ASSEMBLER NOTE: Switch the operands on this instruction so that LSDH
gpr1,gpr2 gets assembled as gpr2 being the A operand and gpr1 being the B
operand. This allows the two halves of a double precision word to appear in proper
order. In this particular example, gpr2 is the destination (the C operand).

PROGRAMMER NOTE: See the assembler note above. This switch of the
operands hobbles indirection. To indirect on gpr1 the programmer must write to
INDIRB, and vice-versa. The programmer must always use the verbose form of the
instruction explicitly declaring the destination to successfully implement
indirection.

LSDL Logical Shift Double Low performs a double precision logical shift using
the B operand as the high word and the A operand as the low word of a 48-bit
input. The shift amount for this operation comes from the ALU_SHIFT SPR and
its range is restricted to +8 through -8 bits as in the LS instruction. Zeros enter
vacated bits in left and right shifts of the 48-bit double word. The result is the low
24-bit word of the 48-bit unsaturated shift output.

Application example (double precision rotate right):

LSDL high, low > low
LSDL low, high > high

ASSEMBLER NOTE: Switch the operands on this instruction so that LSDL
gpr1,gpr2 gets assembled as gpr2 being the A operand and gpr1 being the B
operand. This allows the two halves of a double precision word to appear in proper
order. In this particular example, gpr2 is the destination (the C operand).

 50

PROGRAMMER NOTE: See the assembler note above. This switch of the
operands hobbles indirection. To indirect on gpr1 the programmer must write to
INDIRB, and vice-versa. The programmer must always use the verbose form of the
instruction explicitly declaring the destination to successfully implement
indirection.

 51

 MAX takes the greater in two's complement of the A and B operands:
 C = Maximum(A, B)

The comparison is performed as C = A - B.

ex.: To eliminate the $800000 code in a signal for purposes of symmetry,

 MAX #$800001, some_signal > some_signal

PROGRAMMER NOTE: The state of the flags in the CCR upon equality are
consistent with the SUB instruction.

 MIN takes the lesser in two's complement of the A and B operands:
 C = Minimum(A,B)

The comparison is performed as C = A - B.

ex.: To conditionally saturate to arbitrary high and low limits,

 MIN upper_limit, value !destination is 'value'
 MAX lower_limit, value

 PROGRAMMER NOTE: ditto

 52

 MOV performs the fundamental data movement of B to C, as in:
 MOV B > C
 There is no alteration of the CMR as in MOVcc.

 We strongly discourage the practice of modifying the PC from the ALU using any

instruction not from the JMP class (Jcc, JScc, RScc) nor REPT.

ASSEMBLER NOTE: The A operand of this instruction is a don't-care. For
consistency the ZERO SPR should be used for operand A.

 MOVcc Conditional move executes like MOV but the A operand field holds a

condition mask which always unconditionally preloads the CMR whenever this
instruction is encountered. If this instruction is conditionally executed {}, then
condition will be used in the decision to execute or not. Like the other cc-class
instructions, condition also applies to all conditionally executed operations in the
other function units appearing on the same program line as MOVcc and on all
subsequent queued lines until another condition is preloaded.

PROGRAMMER NOTE: Specifying CMR as the destination (the C operand) of the
MOVcc will overwrite the load of the CMR from the A operand field. The CMR
used to conditionally execute the MOVcc in this unusual usage is the one from the
A operand field.

PROGRAMMER NOTE: MOVcc is not recognized by the assembler. Use instead:
 MOV B > C, condition > CMR

 {MOV B > C, condition > CMR} ! curly braces denote a conditionally executed
instruction
 MOV B > C ! assembler substitutes MOV instruction

 ASSEMBLER NOTE: The move to the CMR is always unconditional and uses
special reduced-latency hardware apart from the normal ALU data path. If no
condition mask is specified, substitute the MOV instruction.

 OR performs the bit-wise logical OR of the two 24-bit operands:
 C = A | B

 RECT performs the operation:

 if (B < 0) C = A - B /* with conditional saturation */
 else C = B

 Two special cases of this instruction exist: If A = 0 the result is the absolute value
of B (full wave rectification; see ABS pseudo). If A = B the result is B if B is
positive, or 0 if B is negative (half wave rectification; see HWR pseudo). Regarding
the CCR, the 'result' of this instruction is the C operand.

 53

 REPT This instruction provides a low-overhead looping mechanism through
which a block of MAC/ALU/AGEN instructions can be made to repeat a specified
number of times. This means that the block is always executed at least once. The
minimum number of instruction lines constituting the block is one.

 The instruction's A operand field always represents the PC value of the last
instruction line of the block. The B operand field or the B operand represents the
number of times to repeat the block. This duality gives rise to two forms of the
REPT instruction.

Three SPRs play a role in this looping mechanism: The REPT instruction (both
forms) always loads the value in the A operand field into the REPT_END SPR.
REPT always automatically loads the value of the PC for the next instruction line
queued for execution (which is not necessarily the instruction line at PC value + 1, so the block can be

disjunct. See the section on Instruction Cycle Execution Latency.) into the REPT_ST SPR. REPT
(first form) loads the value of the B operand field into the REPT_CNT SPR. A
nonzero value in REPT_CNT causes a jump to the PC value contained in REPT_ST
whenever the instruction at the PC value contained in the REPT_END SPR is
executed. REPT_CNT post-decrements at the end of each pass through the block
if it is nonzero.

The hardware for automatically setting up a loop is separate from the normal ALU
data path. The normal data path executes a MOV B > C during this instruction,
however. To make this MOV benign, the C operand is the ZERO SPR. The
instruction then has the following first form:

first_form: REPT last_instruction, countm1

/* REPT equivalent Pseudo-code */
REPT_CNT = countm1, REPT_ST = start_block, REPT_END = last_instruction;

 /* countm1 is a constant expression stored in the B operand field */
do {start_block: MAC/ALU/AGEN instr.;
 :
 last_instruction: MAC/ALU/AGEN instr.} while (REPT_CNT--);

This first form of the REPT instruction is useful for looping 1024 times and less,
and is recommended for repeating an instruction block as short as one instruction
in length. last_instruction is the PC value of the last instruction of the block and
gets loaded into the REPT_END SPR via the A operand field of the instruction.
The constant expression, countm1, gets loaded into the REPT_CNT SPR via the B
operand field of the instruction; GPRs are not allocated to hold either
last_instruction nor countm1. countm1 is the number of times to repeat the
block. countm1 is unsigned, representing the number of loops minus 1, and so the
assembler allows a countm1 of zero. This first form of the instruction always
executes a block of any length at least once.

 ASSEMBLER NOTE: The C operand is ZERO, for consistency, in the first form of

this instruction.

For the REPT instruction, the normal ALU data path movement of B to C occurs
after the REPT_CNT SPR is loaded from the B operand field. Knowing this, the
ALU data path MOV operation can be employed to move a repeat count value from

 54

the contents of some chip register (GPR/AOR/SPR) into the REPT_CNT SPR. The
second form of the instruction is then:

 55

 second_form: REPT last_instruction, countm1_gpr > REPT_CNT

/* REPT equivalent Pseudo-code, second form */
REPT_CNT = address of countm1_gpr, REPT_ST = start_block, REPT_END =
last_instruction;
do {start_block: MAC/ALU/AGEN instr., if (first loop) REPT_CNT = countm1_gpr; /*

transparent */
 MAC/ALU/AGEN instr.;

 :
 last_instruction: MAC/ALU/AGEN instr. } while
(REPT_CNT--);

This second syntax for the REPT instruction allows counts greater than 1024 and
allows computed loop counts. In this second form of the REPT instruction,
countm1_gpr is a register (GPR/AOR/SPR) containing an unsigned value specifying
the number of times to repeat a block of code. (countm1_gpr holds the number of
loops minus 1 and cannot be interpreted, by the hardware, to hold a negative
value.) So the sequence of events first moves the register address of
countm1_gpr into the SPR, REPT_CNT, via the B operand field (as in the first
form). A short time later, the contents of countm1_gpr (the B operand)
overwrites the contents of REPT_CNT via the normal ALU data path because
REPT_CNT is the C operand in this form.

ASSEMBLER and PROGRAMMER NOTE for second form:
Because of pipeline latency issues here, although the REPT_CNT SPR will get the
contents of countm1_gpr on the next instruction cycle, the REPT looping
mechanism will not be able to use it for two instruction cycles. This is fine if the
block to be repeated is at least two instructions long. But if the block is only 1
instruction in length, the loop will execute correctly if and only if the address of
countm1_gpr is nonzero, and the contents of countm1_gpr is the number of
repeats minus one (this is the same as saying the number of loops minus two)!
The assembler will check that the address of countm1_gpr is nonzero.

 Using the second form of the REPT instruction, the block of instructions will loop

at least once if the block is two or more instructions in length, but it will loop at
least twice if the block is only one instruction in length. (For this reason, we do
not recommend the use of the second form of REPT for one-line loops. See
the section on Latent Instructions.) Therefore, if the block length is two
instructions or more, countm1_gpr may rightly hold the value zero indicating 1
loop, no repeat.

Jumps and subroutines (JScc, RScc, or Jcc) are allowed within a loop, but these
instructions must not immediately precede the last instruction of the repeated
block. This hazard is observed by the assembler in the contiguous case.

 One must also be careful on a jump which is intended to abort the execution of the
loop. The REPT looping mechanism will remain functional as long as REPT_CNT is
nonzero. That mechanism will attempt to continue the loop if the last instruction
of the last repeated block is reached by any means. So to be safe, zero the
REPT_CNT SPR using the ALU or MAC unit pseudo instruction called EXIT
before aborting loop execution.
Likewise, if it becomes necessary to terminate a loop at the end of the current

 56

block, this can also be done via the pseudo instruction, EXIT. An EXIT must occur
at least one instruction prior to the last instruction of the block in order for the
loop to stop at the end of the current block.

 Because there is only one set of REPT_ST, REPT_END, and REPT_CNT
registers, multiple REPT instructions cannot be nested. Since these
registers are SPRs, it is possible to set up loops manually by writing directly into
these registers.

 ASSEMBLER NOTE: Since the REPT_CNT, REPT_END, and REPT_ST SPRs are

written as a result of REPT instruction execution, a hazard will occur if one of
these registers is used as the destination of a MAC unit operation on the same
instruction line as the REPT, or on the last line of a repeated block.

 RScc Conditional Return from Subroutine pops the value of the PC from the 4-

deep hardware stack, PCSTACK0,1,2,3. The A operand field of the instruction
holds a condition mask which controls conditional execution by always
unconditionally preloading the CMR whenever this instruction is encountered.
The RScc instruction always moves the B operand to the C operand just as in a
MOVcc instruction. Since RScc modifies the PC, (as do the other members of the JMP class,

Jcc and JScc) its instruction cycle execution latency is 1. So, the instruction line
queued for execution following RScc will always execute as the last instruction line
of the subroutine.

PROGRAMMER NOTE. RScc is not recognized by the assembler. Use instead:
{RS B > C, condition > CMR} ! curly braces denote a conditionally executed instruction.
 RS B > C ! by default the assembler inserts the ALW condition.
{RS, condition > CMR} ! Note the required comma in this syntax.
 RS ! by default the assembler inserts the ALW condition.

 PROGRAMMER NOTES:
 Specifying CCR as the destination (the C operand) of the RScc instruction is a very

good way to restore the state of the Condition Codes before the return home.
 Specifying PCSTACK0,1,2, or 3 as the destination (the C operand) of the RScc will

replace the specified PCSTACK SPR contents after the pop. The original contents
of PCSTACK0 are always used to load the PC for the return to the calling routine,
in any case.

 Specifying CMR as the destination (the C operand) of the RScc will overwrite the
load of the CMR from the A operand field. The CMR used to conditionally execute
the return in this unusual circumstance is the one in the A operand field.

Example of stack management:

 CODE /* pop PCSTACK */
 NOP MOV #here > PCSTACK0
 NOP RS
 NOP /* any MAC/ALU/AGEN instructions */
 here: NOP

 57

 ASSEMBLER NOTE: Although the PCSTACK SPRs are writable by the MAC
unit, a hazard will occur if the MAC unit is writing to one of these registers on the
same instruction line as a JScc or RScc instruction. It is desirable to detect these
events and prevent the programmer from doing this.

 A MOV operation always executes along the normal ALU data path. If the
programmer does not specify B and C operands, they both should be the ZERO
SPR for consistency. The moves to the CMR and PC use special reduced-latency
hardware apart from the normal ALU data path. The A operand field of this
instruction is set to the ALW Condition Mask if not specified.

 SUB is a 2's complement saturating subtraction operator which yields the

difference of two signals, analogous to ADD. It performs the operation:
 C = B - A
 The statement SUB A, B > C is read: 'subtract A from B and put the result in C '.

 58

 SUBB Subtract with borrow is a 2's complement saturating subtraction operator
which yields the difference of two operands. It departs from SUB in that the carry
bit of the CCR is subtracted from the LSB position. This operator is useful for
double precision arithmetic. It performs the operation:

 C = B - A - carry

When the SUBB instruction is used in conjunction with a preceding SUBV to
perform double precision arithmetic, the SUBB operation can saturate the high
24-bit word of the 48-bit result. Since the low 24-bit word was computed in the
preceding SUBV operation, its value will not be conditionally saturated. The low
word of the result can be adjusted by the following conditional operation:

 SUBV a_low, b_low > c_low
 SUBB a_high, b_high > c_high
 IF OV
{XOR MINUS1, c_high > c_low}

(See the section on ALU Pseudo Instructions for the IF pseudo, and see the
section on Setting Condition Codes for information on the V flag.)

 PROGRAMMER NOTE: Since conditionally executed instructions never modify

the Condition Code Register, a double precision subtraction using the SUBB
instruction will not execute properly if the preceding SUBV is conditionally
executed {}.

 SUBREV is a 2's complement saturating subtraction operator which yields the

difference of two signals, just like SUB. But the position of the source operands
with respect to the minus sign is reversed. It performs the operation:

 C = A - B

 SUBV is an unsaturating subtraction operator, analogous to ADDV. Like SUB,

it performs the operation:
 C = B - A
 SUBV (like ADDV) can be used for double precision math and unsigned address

arithmetic. (See SUBB instruction.)

 XOR performs the bit-wise logical exclusive OR of the two 24-bit operands:
 C = A ^ B
 Example:
 The following code exchanges the contents of two registers without requiring a

third register:
 XOR some_reg1, some_reg2

 XOR some_reg2, some_reg1
 XOR some_reg1, some_reg2

 59

 60

3.2. ALU Pseudo Instructions
Pseudo instructions make use of the fundamental instructions in an unusual or limited
way. Since ALU pseudo instructions are assembled as one of the fundamental ALU
instructions, they affect the CCR just the same.

 ABS B > C
 performs the operation:
 RECT ZERO, B > C
 This is the absolute value operation and it is a special case of the RECT instruction

is which the A operand is the ZERO SPR.

ASSEMBLER NOTE: The ABS instruction requires that the A operand be the
ZERO SPR.

 ASH B >>n > C
 performs the operation:
 AS #-n, B > C
 If a computed shift is required, use the primitive AS instruction. The syntax here

is the same as for the MAC unit pseudo.

ASH some_reg >>n ! some_reg is also destination.
ASH some_reg <<n ! shift left for positive n

n is a constant expression (no # sign allowed); -8 <= n <= 8 bits.

ASSEMBLER NOTE: The syntax above is equivalent to AS A, B > C where the A
operand holds the shift amount. A-operand negative means shift right; this is
derived from exponentiation of 2.

 61

 BIOZNORFSH
BIOZNORFSH B > C
This pseudo performs a BIOZ instruction with the exception that the B and C
operands of the indicated MOV operation (see BIOZ, Equivalent Pseudo-code) are
not set to the REF SPR. This instruction always moves B to C. The first form
of the instruction uses the ZERO SPR as the defaults for B and C.

The standard BIOZ instruction uses MOV REF > REF to accomplish at least one
refresh of internal registers. The BIOZNORFSH pseudo does not use the REF
SPR thereby inhibiting only that first refresh. To inhibit subsequent refresh
(which is not desirable, by the way) during a BIOZ (while-loop) suspension, the
HALT_REF_DIS bit in the HARD_CONF SPR must be set. That bit controls
internal register refresh during the halt and suspension states of the chip. In the
suspension state, it disables refresh when set by effectively changing the HOST
instruction, embedded within the BIOZ instruction, to a HOSTNORFSH. The
HALT_REF_DIS bit overrides the HALT_MAC_REF bit, but it can never override
the usage of the REF SPR, used as an instruction source and destination, as a
means to effect refresh. See the description of Internal Register Refresh for
more details on the use of this bit.

ASSEMBLER NOTE: If the programmer does not specify B and C operands, they
should be the ZERO SPR for consistency. The A operand of this instruction is a
don't-care, but it should be the ZERO SPR for consistency.

 CLR C
 performs the operation:
 MOV ZERO > C
 This is a shorthand way to clear a register.

 CMP A, B
 CMP A, B > C
 is a pseudo instruction created from the SUBREV instruction using the

destination ZERO. It performs the comparison operation:
 ZERO = A - B
 The assembler supplies the destination ZERO when C is not specified. Used in this

manner, the CMP pseudo constitutes an arithmetic test which results in a setting
of the CCR that is used in subsequent instruction lines by conditionally executed
instructions.

 The statement, CMP A, B is read: 'compare A to B and set the CCR
accordingly'.

 CMP A, B > C performs the same operation but has a destination that is not
ZERO.

 62

 DBL some_reg > some_other_reg
DBL some_reg

This pseudo instruction doubles a register's contents.
The second form performs the operation:
 ADD some_reg, some_reg > some_reg

 63

 DEC some_reg = SUB ONE, some_reg > some_reg
 DECV some_reg = SUBV ONE, some_reg > some_reg

 DIFF B > C
 performs the operation:
 C = $7FFFFF - B

ASSEMBLER NOTE: This instruction requires the constant $7FFFFF be stored in
a GPR or AOR for use as the A operand. It also assumes that the ALU SUBREV
instruction is used.

 EXIT
 This ALU pseudo instruction is used to terminate a repeating block of code,

instigated by the REPT instruction, at the end of the block. Although the ALU
EXIT pseudo instruction may be placed anywhere within a repeated block of
instructions, it will not terminate the current block if placed on the last line of the
block; in that case it will, however, terminate the block repeat after the next time
around. The operation is:

 REPT ZERO, 0 > ZERO
 (The A operand is a don't-care, the B operand field is 0.)

 HALT
 ESP2 program halt of the chip can be achieved by the operation:
 OR #$2, HOST_CNTL_SPR > HOST_CNTL_SPR

 This instruction sets the ESP_HALT bit in HOST_CNTL_SPR without affecting the
remaining bits of the register. (See the section on Halting the Chip.) To successfully
halt ESP2 under program control, the ESP_HALT_EN bit of the HOST_CNTL
interface register must also be set, otherwise HALT is ignored.

 The chip can be taken out of the halt state by having the system host clear the
ESP_HALT and HOST_HALT bits of the HOST_CNTL interface register.

 There is an execution latency of 1 instruction cycle for HALT to take effect,
therefore the
 instruction line queued for execution following HALT will execute before the chip
enters into the halt state.

 ASSEMBLER NOTE: To use this instruction, a GPR must be allocated to hold the
value $2.

 HALVE B > C = AS #-1, B > C

 64

 HOSTNORFSH
HOSTNORFSH B > C
This pseudo allows host interaction, as in the HOST instruction, when host access
to an internal register is pending. If no host access is pending, the instruction
performs one MOV B > C where B and C are not the REF SPR. This instruction
inhibits the internal register refresh which is normally part of the standard HOST
instruction when no host access is pending, by purposely not referencing the REF
SPR in the B and C operands. In general, it is not a good idea to inhibit refresh.

ASSEMBLER NOTE: If the programmer does not specify B and C operands, they
both should be the ZERO SPR for consistency. The A operand of this instruction
is a don't-care, but it should be the ZERO SPR for consistency.

 HWR B > C
 performs the half-wave rectification operation:

if B < 0
 C = A - B = 0
else
 C = B

HWR is a special case of the RECT instruction where the A operand equals the B
operand:
 RECT some_reg, some_reg > some_other_reg.

ASSEMBLER NOTE: The HWR instruction requires that the A operand and the B
operand be the same register.

 IF condition = MOV ZERO > ZERO, condition > CMR

{IF condition} = {MOV ZERO > ZERO, condition > CMR}
These pseudo instructions utilize the MOVcc instruction to always unconditionally
preload the Condition Mask Register with a condition mask. Unlike the CMP
pseudo, IF does not constitute a test of any sort. In fact, the CCR is largely
unaffected by these pseudos. (Only the IFLG and IOZ flags of the CCR are
updated in the first form.) The {second form} is used when it is desired that all
the flags remain unmodified in the CCR. Like MOVcc, the new condition mask
will apply to all conditional operations on the same program line containing the IF,
and on all subsequent queued lines until another condition is preloaded.

PROGRAMMER NOTE: condition is a constant expression. The assembler
recognizes EQ, Z, GTE, etc. (see the section on Arithmetic Condition Masking). All
cc-class instructions always unconditionally preload the CMR.

ASSEMBLER NOTE: The B and C operands for this instruction should be
assembled as the ZERO SPR, while the A operand field holds the preload
condition mask which gets sent to the CMR.

 65

 INC some_reg = ADD ONE, some_reg > some_reg
 INCV some_reg = ADDV ONE, some_reg > some_reg

 66

 LSH B >>n > C
 performs the operation:
 LS #-n, B > C
 and uses a specified shift amount; -8 <= n <= 8 bits (right) .
 If a computed shift is required, use the primitive LS instruction.

LSH some_reg >>n ! some_reg is also destination.
LSH some_reg <<n ! shift left for positive n

n represents a constant expression (no # sign allowed).

ASSEMBLER NOTE: The syntax above is equivalent to LS A, B > C where the A
operand holds the shift amount. A-operand negative means shift right; this is
derived from exponentiation of 2.

 NEG B > C
 performs the operation:
 ZERO - B > C
 This is a special case of the SUBREV instruction in which the A operand is

supplied by the assembler as the ZERO SPR.

 NOP
 performs a refresh of the internal register indicated by the REFPT SPR. The

instruction is assembled as:
 MOV REF > REF
 This refresh (and the MAC unit RFSH pseudo), when successfully executed (not

skipped), cannot be overridden by any means. See the section on GPR and AOR
Refresh for more information on the use of the REF SPRs for internal register
refresh.

ASSEMBLER NOTE: The A operand of this instruction is a don't-care, but it
should be the ZERO SPR for consistency.

 NORFSH
 This no-operation instruction is assembled as:
 MOV ZERO > ZERO

ASSEMBLER NOTE: This NORFSH pseudo requires that the C operand be the
ZERO SPR. The A and B operands are don't-cares, but they should be ZERO for
consistency.

 RFSH identical to NOP pseudo instruction.

 67

 68

 ROL some_reg
ROL some_reg > some_other_reg = LSDH some_reg, some_reg >
some_other_reg
This is a 24-bit rotate left (having no other bits outside the register involved). The
ALU_SHIFT SPR provides the shift amount for the instruction.

 ROR some_reg

ROR some_reg > some_other_reg = LSDL some_reg, some_reg >
some_other_reg
This is a 24-bit rotate right (having no other bits outside the register involved).
The ALU_SHIFT SPR provides the shift amount for the instruction.

 TEST A performs: ADD A, ZERO > ZERO

TEST A > C performs: ADD A, ZERO > C
This test sets the flags in the Condition Code Register, appropriate to the
arithmetic status of operand A, so that they can be used in subsequent instruction
lines by conditionally executed instructions. The second form of this pseudo also
moves operand A to some destination.

 69

3.3. Condition Code Register
Associated with the ALU is a Condition Code Register, the CCR, which is used for the
conditional execution of instructions. Seven bits (flags) from this register reflect the
arithmetic status of the chip, particularly the result of the previous queued ALU
operation. One bit (IFLG) reflects the state of a pin, while the remaining bit (IOZ) reflects
the state of the internal IOZ status bit located in HOST_CNTL_SPR and the HOST_CNTL
interface register. The 9 LSBs of this 24-bit CCR are:

bit: 8
IOZ

7
IFLG

6
NB

5
NA

4
N

3
C

2
V

1
LT

0
Z

The CCR contains 5 flags whose states are derived in most ALU operations from basic
arithmetic results:
Z (zero result)
C (carry out)
N (negative result)
V (result overflow)
The LT (less than) flag is generated by the logic:

LT = V ^ N' /* exclusive OR */

where N' is the sign of the result before saturation. Having the LT flag allows simple
detection of a Less-Than Condition.

The sixth and seventh flags, NA and NB, hold the sign of the A and B operands,
respectively, from the previous queued ALU operation.

The eighth flag is IFLG; it is an image of the IFLAG pin signal which is part of the
synchronization interface. The IFLAG pin is an asynchronous uncommitted input to the
ESP2 which is internally synchronized by the ESP2. The synchronization forces the state
of IFLG to update on a per instruction basis along with the ALU's update of the flags 0
through 6.

The nineth flag, IOZ, reflects the state of the internal IOZ status bit. The IOZ status bit is
a function of the IOZ input pin signal which is part of the synchronization interface. IOZ is
employed by the instruction BIOZ to automatically synchronize a running program to the
sample-rate signal at the IOZ pin. (See the BIOZ instruction for more details.) The
asynchronous IOZ pin signal is internally synchronized by ESP2 to force the IOZ flag to
update on a per instruction basis along with the ALU's update of the remaining flags.

The upper bits of the 24-bit CCR SPR are read as zeros as are all SPRs less than 24 bits in
width. The CCR is mapped in the SPR address space and is read-writable by the
instructions as is any other SPR. IFLG and IOZ, however, are read-only in the CCR SPR.
The IOZ status bit can be manually modified by writing to the HOST_CNTL (host)
interface register or to HOST_CNTL_SPR.

PROGRAMMER NOTE:
The programmer may have occasion to restore the chip state after returning from some
subroutine. The programmer should be wary of using the CCR as the destination of any
instruction other than an ALU MOV, MOVcc, or RScc because the outcome would be

 70

unpredictable since many ALU instructions automatically manipulate bits of the CCR.
Using the ALU MOV, MOVcc, or RScc to restore the CCR, the CCR bits become active
during the next instruction cycle for the purpose of conditional execution. (Moving to the
CCR from the MAC unit produces a hybrid combination of the MAC unit supplied data
with only the automatically updated CCR bits from the ALU; interesting but dangerous.
See SPR Hazards.)

 71

3.3.1. Setting Condition Codes
Condition Codes of the CCR are generated as follows for each ALU operation:

 Table 5. CCR Setting by Instruction
OPERATION IOZ IFLG NB NA N C V LT Z
ADD, ADDV, ADDC
SUB, SUBV, SUBB, SUBREV
AND, OR, XOR
MIN, MAX
AVG
RECT
AMDF
AS, ASDH
ASDL, LS, LSDH, LSDL
BREV, DREV
LIM
MOV, HOST, BIOZ, REPT
MOVcc, Jcc, JScc, RScc
{any instruction}

X
X
X
X
X
X
X
X
X
X
X
X
X
-

X
X
X
X
X
X
X
X
X
X
X
X
X
-

X
X
X
X
X
X
X
X
X
X
-
-
-
-

X
X
X
X
X
X
X
X
X
X
-
-
-
-

X
X
X
X
X
X
(4)
X
X
X
X
-
-
-

X
X
-
X
-
-
X
(1)
(1)
-
X
-
-
-

X
X
-
X
X
(2)
X
X
-
-
X
-
-
-

X
X
-
X
-
(2)
X
-
-
-
X
-
-
-

X
X
X
(3)
X
X
X
X
X
X
(3)
-
-
-

N' is defined to be the MSB of the adder/subtractor output prior to saturation, shifting,
MUXing, XORing, etc.

X in the NB and NA flags indicates that the flag is set to the sign of the corresponding
source operand, two's complement. NB and NA, as other CCR bits, are active for the
purpose of conditional execution on the next instruction cycle.

X in the IOZ flag indicates that the flag is set to the value of the IOZ status bit. The IOZ
status bit is in turn a function of the IOZ input pin from the synchronization interface.

X in IFLG indicates that the flag is set to the value of the IFLAG input pin from the
synchronization interface.

X in the N flag indicates that the flag is set to the sign of the result of the operation, two's
complement.

X in the C flag indicates that the flag is set to the value of the carry output of the MSB of
the adder/subtractor as in classical 2's complement arithmetic.

X in the V (overflow) flag indicates that the flag is set to the value G ^ N' where G is
the guard bit (beyond the MSB) of the adder/subtractor. (The ^ symbol indicates the
exclusive OR binary operator.)

X in the LT flag indicates that the flag is set to the value N' ^ V .

X in the Z flag indicates that the flag is set to a 1 if the result of the operation is a zero.

(-) Indicates that this flag is not altered by the operation.

 72

(1) C receives the last bit shifted off the left of the 24-bit result in a left shift, or off the
right of the 24-bit result in a right shift (before saturation is performed in the cases of
arithmetic shifts).
If the shift amount is zero the C flag gets the bit to the immediate left of the MSB:
 In the case of AS or ASDH this would be a sign extension of the MSB.
 In the case of LS or LSDH this would be zero.
 In the case of ASDL or LSDL this is the LSB of the B operand.

 73

(2) V and LT are modified based on the result of the subtraction if the B operand is less
than zero. If the B operand is greater than or equal to zero, the subtraction is not
performed, therefore the V and LT flags will be cleared.
(3) Z asserted based on the result of the comparison not the result of the instruction.
(4) The result of an AMDF operation always has a positive sign. Therefore, the N flag for
this operation is set to N' as defined above, which is indicative of whether the exclusive OR
operation was performed.

Only the ALU automatically sets the CCR. CCR bits will be active for the conditional
execution of ALU, and/or MAC unit, and/or AGEN operations during the next instruction
cycle. CCR bits become valid at the end of the ALU instruction (see Instruction Cycle
Timing diagram); thus, they are available (as source operand) for explicit reading by the
next queued ALU instruction, but by the second queued MAC unit instruction.

If the ALU instruction is conditionally executed {}, the CCR will remain unchanged from
the previous queued instruction.

 74

3.3.2. Conditional Execution Mechanism
In addition to the program control instructions (e.g., the JMP class), the ESP2 chip has a
mechanism that allows individual function unit operations to be conditionally executed.
Any or all instruction fields may be marked by the programmer as conditionally executed
{}, meaning that the corresponding function unit's operation will only be executed when
the ALU's Condition Code Register (CCR) is in a specified state. That state constitutes
the skip Condition, and is specified by loading a particular mask value into the Condition
Mask Register (CMR) under program control. In this manner, the individual MAC unit,
and/or ALU, and/or AGEN instructions can be conditionally executed according to a
variety of ALU Conditions. The Conditions are formulated from combinations of the nine
CCR flags:
IOZ, IFLG, NB, NA, N, C, V, LT, and Z.

All ESP2 instructions execute in one instruction cycle whether or not conditionally
executed. When the Condition Mask and Condition Code Register do not correspond, a
function unit instruction having its skip bit set {} will have its destination inhibited and all
its functionality disabled (with caveat under Instructions Not Skippable). The ALU, MAC
unit, and AGEN each have their own skip bit so this mechanism can be applied
independently to each.

Recall that only the ALU automatically sets the CCR. ALU instructions which are
conditionally executed never set the CCR, regardless of whether they were executed or
not. This provision allows for the CCR to be set once before a block of conditionally
executed instructions. Then, that CCR is automatically held the same across the entire
length of the block. In this way, an entire block of instructions may be conditionally
executed based on the same Condition. The Condition Mask Register (CMR) can be
initialized at the beginning of the block, but it is unconditionally subject to change if a cc-
class instruction is encountered. To keep the CMR the same across the block, any cc-class
instruction within the block must reload the CMR with the desired mask. (Note that if a
block of MAC unit and/or AGEN instruction fields are conditionally executed while the
corresponding block of ALU instructions is not, then the CCR will be changing on a per
instruction basis, but in accordance with the specific instructions executed in the ALU.)

To detect a skip Condition during the instruction cycle of any conditionally executed
instruction field, the following logic is performed:

skip\ = NOT

M
 ^ ((NB&NB

M
)|(NA&NA

M
)|(N&N

M
)|(Z&Z

M
)|(V&V

M
)|(C&C

M
)|(LT<

M
)|(IFLG&IFLG

M
)|(IOZ&IOZ

M
))

The subscript M in the skip\ equation indicates the corresponding bit of the Condition
Mask Register. Each Mask bit in the CMR (except NOT) is ANDed with the corresponding
bit in the CCR, and the results are ORed together. This result is then inverted (or not) as
per the status of the NOT bit, to account for the extra negated cases. If the final result is
false (equal to 0) then the current instruction field is skipped; that is to say, the field
becomes a NOP in the case of the MAC unit and AGEN and a NORFSH in the case of the
ALU by disabling the output along any destination buss.

Note that a NEV (execute never) Condition, where instructions will be unconditionally
skipped, can be formulated by clearing all Condition Mask bits to 0 except for a 1 in the
NOT bit. Likewise, ALW (execute always) can be formulated by clearing all bits in the
CMR including NOT.

 75

3.3.3. Instructions Not Skippable
All instructions (including REPT, BIOZ, HOST, and their related pseudos) are
conditionally executable {} with few qualifications:

All cc-class instructions (Jcc, JScc, RScc, and MOVcc) always unconditionally preload the
CMR whenever these instructions are encountered ({conditional} or not). This action
cannot be inhibited. Fortunately, the MOV instruction has two primitive forms.

Blocks of conditionally executed {} ALU instructions warrant consideration regarding the
impact upon the conditional execution of several instructions, ADDC, SUBB, LIM, ASDL,
which input Condition Code Register bits as part of their computation within the block.
(See the description of each instruction named for more details.) Double precision
operations are impacted; the programmer should consider the use of branching
instructions instead of conditionally executed instructions.

ASSEMBLER NOTE: Warnings should be issued when the instructions, ADDC, SUBB,
LIM, ASDL, are found conditionally executed.

When the SPR called REF is used as a source operand in either the MAC unit or the ALU,
the contents of the REFPT SPR are incremented. This action cannot be inhibited through
conditional execution. See the section on GPR and AOR Refresh.

3.3.4. Arithmetic Condition Masking
There are 16 commonly used arithmetic Conditions which can be tested based on the 5
CCR flags:
N, C, V, LT, and Z. The programmer loads a mask (having 5 corresponding bits and a
NOT bit) into the Condition Mask Register to select the Condition which will cause
instructions to be conditionally executed. The mask values for the 16 Conditions are listed
in Table 6. Note that mask values are not copies of the bit patterns produced by the CCR
when these Conditions exist; they are merely the values that are necessary and sufficient
for detecting the desired Condition.
In addition to these Conditions, the flag IFLG can be used for conditional execution based
upon the state of the input pin signal, called IFLAG, which it reflects. Similarly, the flag
IOZ can be used for conditional execution as it reflects the state of the internal signal
called the IOZ status bit (see BIOZ instruction), which is in turn a function of the input pin
signal called IOZ.

The CMR can be written by a number of means:
1) Special instructions in the ALU always unconditionally move the value of the A
operand field of the instruction into the CMR; These are the cc-class instructions,
consisting of Jcc, JScc, RScc, and MOVcc. When any one of these instructions is
encountered ({conditional} or not), a new Condition Mask is preloaded and becomes
effective for all conditional operations (MAC, ALU, and AGEN) on the same and
subsequent queued instruction lines, until a new Mask is loaded.
2) A second method for writing the Condition Mask is to use the ALU or MAC unit to
MOV the contents of some register (GPR/SPR/AOR) into the CMR along the normal data
paths. Under this circumstance, the new Condition Mask will be effective for all
conditional operations on the queued instruction lines following the MOV, until a new
Mask is loaded.

 76

PROGRAMMER NOTE: If both function units specify the CMR as their destination
operand on the same instruction line, the ALU write to the CMR will supersede the MAC
unit write to the CMR. Conditional Execution Latencies of the CMR are discussed in the
Software Spec. in the section having that name.

ASSEMBLER NOTE: A hazard will occur if the MAC unit instruction specifies the CMR
as a destination on the same instruction line as an ALU operation which is a Jcc, JScc,
RScc, or MOVcc. In this case, both function units are trying to write the CMR
simultaneously with unpredictable results.

 77

 Table 6. Arithmetic Condition Code Masks

Condition

Mnemonic

N
O
T

I
O
Z

I
F
L
G

N
B

N
A

N

C

V

L
T

Z

Mask
Value

Equal (Zero)
Not Equal (NonZero)
Negative
Positive (>= 0)
Overflow
No Overflow
Lower (Carry Set)
Higher or Same (Carry
Clear)
Lower or Same
Higher
Less Than
Greater Than or Equal
Less Than or Equal
Greater Than
Always
Never
IFLG set
IFLG clear
IOZ status bit set
IOZ status bit clear
B operand negative
B operand positive
A operand negative
A operand positive

EQ=Z
NEQ=NZ
NEG
POS
OV
NV
LO=CS
HS=CC
LS
HI
LT
GTE
LTE
GT
ALW
NEV
IFLG
NIFLG
IOZ
NIOZ
BNEG
BPOS
ANEG
APOS

1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
1
0
1
0
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0

1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0

$201
$001
$210
$010
$204
$004
$208
$008
$209
$009
$202
$002
$203
$003
$000
$200
$280
$080
$300
$100
$240
$040
$220
$020

HI, LO, HS, LS can be used for unsigned comparisons such as for address arithmetic.

 78

3.4. Instruction Cycle Execution Latency (Latent Instructions)
This advanced topic may be skipped by the novice or the first-time reader.

This category of latency regards the latency of the instructions themselves. All
the latent ESP2 instructions are from the ALU. No instruction has an execution
latency which exceeds 1 instruction cycle. The latent instruction is one whose
impact is not effective until the second queued program line following. The reason
we study this topic is because we must be able to predict the effect of cascades of
instructions, some of which may be latent.

The latent instructions in the ESP2 are: Jcc, JScc, RScc, and BIOZ.
The latent pseudo instructions are: BIOZNORFSH and HALT.

The JMP class (Jcc, JScc, RScc) instructions always see the next queued
instruction line execute prior to the actual branch; this is a prominent case.
The HALT class (HALT, BIOZ, BIOZNORFSH) instructions see the next queued
instruction line execute prior to freezing the PC; most all audio programs will
employ the BIOZ instruction.

In the following examples, the labels, identified by colons, each denote a PC value
corresponding to a particular program line number. Many of the ancillary
instructions are NOPs to make the examples simpler, but they generally represent
any nonlatent instruction.

CASE: JMP class
An important instruction sequence involves the nonlatent low-overhead loop
instruction, REPT, which is not from the JMP class. Specifically, we consider:

CODE
I1: NOP REPT label2, countm1

I2: NOP JMP label1 /* CMR unconditionally preloaded with ALW */
I3: NOP /* executed */
label1: NOP
label2: NOP

The outcome is that the REPT_ST SPR receives the value, I2, as expected. The
loop spans the program lines I2 through label2. But now consider:

CODE
label1: NOP
label2: NOP

 :
 :
I1: NOP JMP label1 /* CMR unconditionally preloaded with ALW */
I2: NOP REPT label2, countm1

The outcome has changed such that the REPT_ST SPR receives the value, label1.
This happens because when REPT is executed, the program line at label1 is queued
next in line for execution; this is what is meant by the phrase, queued for

 79

execution. The loop now spans only label1 and label2. This feature permits the
use of disjunct REPT blocks.

 80

CASE: HALT class
CODE
I1: NOP HALT
I2: NOP REPT label1, countm1_gpr > REPT_CNT

label1: NOP /* loop */

This important exception is for one-line loops using the second form of the REPT
instruction. The previous halt state disrupts the normal latency of the load to the
REPT_CNT SPR. So our one-line loop rule for the second form of REPT reverts
to the rule for the first form, and the concern about the address of countm1_gpr
disappears. Since this is too difficult to remember, we recommend using only
the first form of REPT for one-line loops (see REPT instruction description).

ASSEMBLER NOTE: A warning should be issued under the circumstance that a
HALT instruction precedes the second form of the REPT instruction used for a
one-line loop. The warning states that countm1_gpr should not contain the
number of repeats less one (i.e., not the number of loops desired less two); but
rather, the number of repeats desired.
If the instruction preceding REPT is BIOZ (or BIOZNORFSH) for this case, the
outcome depends upon whether suspension actually occurs. Hence, this alternate
warning should recommend not using the construct unless the programmer knows
that suspension will always occur or always not occur.

CASE: JMP class, JMP class
Consider the example of two JMP class instructions, one after the other:

CODE
I1: NOP JMP label1 /* CMR unconditionally preloaded with ALW */
I2: NOP JMP label2 /* CMR unconditionally preloaded with ALW */
I3: NOP /* hurdle 1 */
label1: NOP
I5: NOP /* hurdle 2 */
label2: NOP

According to the prescribed latency of these instructions above, the sequence of
executed program lines will be as follows: I1, I2, label1, label2.

CODE
I1: NOP JS label1 /* CMR unconditionally preloaded with ALW */
I2: NOP JMP label2 /* CMR unconditionally preloaded with ALW */
I3: NOP /* hurdle 1 */
 :
 :
label1: NOP
I5: NOP /* hurdle 2 */
label2: NOP

Here we find that the PC value I3 is pushed onto the hardware stack for the
instruction sequence above; this is as expected.

 81

CODE
I1: NOP JMP label1 /* CMR unconditionally preloaded with ALW */
I2: NOP JS label2 /* CMR unconditionally preloaded with ALW */
I3: NOP /* hurdle 1 */
label1: NOP
I5: NOP /* hurdle 2 */
 :
 :
label2: NOP

But now we find that the instruction sequence above pushes I5 onto the stack.
Again, this is because when JScc is executed, the instruction line at label1 is
queued next in line.

A number of academic examples can be constructed from a sequence of JScc/RScc
instructions, but they are perhaps not very useful. The predominant feature of
this particular sequence is the aerobatic trajectory of the PC. We give one such
example:

CODE
 NOP JS label /* CMR unconditionally preloaded with ALW */
 NOP RS /* CMR unconditionally preloaded with ALW */
pcstack0: instruction0 /* hurdle */
label: instruction1
 :

In the example above, pcstack0 is pushed onto the hardware stack by JS. The
program line holding RS is executed, then instruction1 is executed, and then
instruction0 is executed. Then instruction1 is executed again before the program
continues on. instruction1 is executed a total of two times, but instruction0 is
executed only once. By inserting NOPs and/or moving the label around, many
more such exercises can be generated.

CASE: HALT class, HALT class
Generally speaking, this type of instruction sequence is not useful and should not
be programmed. For example, two HALT pseudo instructions cannot be queued
because the impact of the second HALT will be lost upon restart by the system
host. As a second example, consider a HALT/BIOZ sequence. The BIOZ
instruction loses its execution latency as the chip becomes effectively 'suspended'
indefinitely. When the ESP_HALT_EN bit is not set, the execution latency of
BIOZ returns hence producing a different outcome. There is no useful purpose for
this.

 82

CASE: JMP class, HALT class
The following instruction sequence is a useful programming paradigm (see the
Applications section.):

CODE
top_of_program: NOP /* executes prior to suspension. */
I1: NOP /* PC frozen here. */
 :
 :
 NOP JMP top_of_program /* CMR unconditionally preloaded with ALW */
 NOP BIOZ
I2: ... /* never executed */

Since both JMP and BIOZ are latent, the instruction line queued for execution
following each is always executed before impact. The contiguous program line at
I2 is never executed. The PC becomes frozen at the second queued instruction
line following BIOZ if suspension occurs. When suspension terminates, execution
will resume at instruction line I1.

CASE: HALT class, JMP class
This instruction sequence is automatically detected by the hardware as a special
case. The HALT_JUMP monitor bit in the HOST_CNTL register goes high when
the normal run-time latency of a JMP class instruction is being enforced following
a HALT class instruction. The execution latency of a JMP might be absorbed by a
preceding HALT class instruction were it not for this enforcement. So, from a
programmer's point of view, a JMP class instruction has the same execution
latency under all circumstances regardless of what instruction precedes it. We
present this case here only in the interest of being complete. As an example:

CODE
 NOP BIOZ
I0: NOP JMP I2 /* HALT_JUMP bit stays high for this cycle. */
I1: NOP /* PC frozen here if it freezes. */
 : /* hurdle */
 :
I2: ...

Here the JMP instruction line at PC location I0 always executes prior to any
amount of suspension time (including none) due to BIOZ. The instruction line at
location I1 will execute following any suspension. But I1 always executes prior
to the branch regardless of whether the state of suspension actually occurs; this is
because of latency enforcement. After I1 executes, the PC will relocate to I2.
Because a feature of the chip synchronization interface allows individual program
loops to occasionally exceed the sample period, it is not desirable that the BIOZ
instruction unequivocally cause suspension. It is for this reason that the
enforcement is necessary.

 83

4. Indirect Register Addressing

A mechanism is provided for indirect addressing of internal register-type operands for the
MAC unit (D, E, F), the ALU (A, B, C), and AGEN (G). Seven SPRs, corresponding to
the six operands of the ALU and MAC unit and the one AOR operand of the AGEN
(INDIRA, INDIRB, INDIRC, INDIRD, INDIRE, INDIRF, and INDIRG), act as pointer
registers holding operand addresses. This mechanism indirectly accesses internal
register data with normal latency once the pointer registers are loaded.

To proceed with indirect register addressing, we must first load some internal register
address into one (or more) of the pointer registers corresponding to the desired
operand(s). To activate the indirection mechanism, an instruction is written substituting
the INDIRECT SPR as the desired operand for which indirection should occur. This
substitution can be for any (or all) of the seven instruction operands. The hardware will
recognize this special INDIRECT SPR and substitute the contents of the corresponding
pointer register (INDIRA,B,C,D,E,F,G) for the operand address.

The INDIRECT SPR is not a physical register; it is a reserved address in the SPR space
which is used by the programmer to activate indirection on a particular operand. Two
more reserved addresses, INDIRINC and INDIRDEC, are provided which also accomplish
indirection via the pointer registers. INDIRINC has the augmented functionality of
post-incrementing the corresponding pointer register's contents. INDIRDEC post-
decrements the corresponding pointer register's contents. (This can be very useful in looping on

internal array elements.) When automatically inc[dec]remented in that manner, the INDIRA,
INDIRB, and INDIRC pointer SPRs each become an extra source and destination whose
timing follows the ALU source and destination in the Instruction Cycle Timing diagram
shown in Figure 2. Likewise, automatic inc[dec]rement of INDIRD, INDIRE, and INDIRF
follow the MAC unit source and destination timing, while INDIRG inc[dec]rement follows
AGEN source and UPDATE BASE timing. The inc[dec]remented pointer register
contents will be available for the purpose of indirection in the next instruction cycle; i.e.,
these automatic inc[dec]rement operations are nonlatent, and normal inter-unit latencies
apply.

Miscellaneous
If the function unit instruction whose indirection operand is specified as INDIRINC or
INDIRDEC is actually skipped (as in conditional execution), then the automatic increment or
decrement will not take place.

We see in Figure 1 that the MAC unit's E operand has no access to AORs. Similarly, if
INDIRE points to an AOR, the outcome is indeterminate.

Indirection within the REPT instruction repeated block is not prohibited.

 84

4.1. Exceptions to Indirection
Since the ALU instructions, MOVcc, Jcc, JScc, RScc, and REPT, use the source operand
fields of the instruction for storing Condition Mask and repeat count values, the
indirection mechanism is disabled in the hardware for those particular source types to
avoid unexpected results. This could hypothetically occur if one of the afflicted source
operand fields were to contain a value which matched the INDIRECT, INDIRINC,
INDIRDEC, or REF reserved addresses.

Table 7 lists the afflicted instructions showing the operands for which indirection is
available * :

Table 7. Indirection Operand Availability

Instruction Operand

A
Operand
B

Operand
C

MOVcc * *
Jcc * n/a
JScc * n/a
RScc * *
REPT * n/a

ASSEMBLER NOTE: The assembler should detect the use of the REF, INDIRECT,
INDIRINC, and INDIRDEC keywords as the B operand of REPT, or the A operand of
MOVcc, Jcc, JScc, and RScc and then warn the programmer that indirection is disabled
for those operands.

ASSEMBLER NOTE: In the * cases of Jcc, JScc, and REPT, there are four high
instruction addresses which cannot be directly referenced as PC values. These illegal
instruction addresses correspond to the register addresses of INDIRECT, INDIRINC,
INDIRDEC, and REF. In these cases it is the PC value that is detected as an error, while
the use of the four keywords is legal; the REF keyword draws an 'outcome indeterminate'
warning, however.

ASSEMBLER NOTE: The values for the INDIRECT, INDIRINC, and INDIRDEC
reserved addresses are all 10-bit values having 1 in the MSB. The G operand field of the
instruction is only 9-bits wide. But, since the G operand field always refers to AORs, the
10th bit of this field is implicitly a 1.

PROGRAMMER NOTE: In order to use indirection effectively, always use the verbose
form of the instructions using no implicit destinations.
ASDH, ASDL, LSDH, and LSDL require special consideration regarding indirection. See
those instructions for information.
Admittedly our method of indirection is contrived. The motivation was the primary design
objective that makes all instructions execute in one cycle.

 85

4.2. Pointer Register Latencies
Since the contents of the INDIRA,B,C,D,E,F,G pointer SPRs are used as operand
addresses rather than as operands, the latencies encountered when these registers are
modified as normal destinations differ from the inter-unit latencies described elsewhere.
These latency rules are as follows:

Nonlatent

1. The result of a MAC unit write to INDIRA,B,C is available for use as an indirect

address no sooner than 1 instruction cycle (1 queued program line) later.

Latent

2. The result of a MAC unit write to INDIRD,E,F,G is available for use as an indirect

address no sooner than 2 instruction cycles later.

3. The result of an ALU unit write to INDIRA,B,C,D,E,F,G is available for use as an

indirect address no sooner than 2 instruction cycles later.

A programmer's chart can be found in the ESP2 Language and Software Specification.

 86

5. Internal Memory Refresh

The majority of internal memory is implemented in Dynamic RAM (DRAM) and, therefore,
requires a periodic refresh of its contents. This consideration applies to the instruction
memory, the GPRs, and the AORs. Memory refresh might interfere with write access
from the host interface or with memory writes made in the course of executing some
typical ESP2 program were it not for dedicated hardware that transparently detects and
prevents such collisions.

The decision to use DRAM for selected memory functions greatly increased the amount of
internal memory. The SPRs (Special Purpose Registers) are implemented as Static RAM
(SRAM), so they do not require refresh.

5.1. Instruction Refresh
Collision free instruction refresh is transparent to the programmer insofar as it happens
nearly all the time; including suspension and halt. There are 4 memory accesses
available in the instruction array per instruction cycle; these consist of two reads and two
writes. Only 1 read is required for instruction fetching based on the PC, leaving three
accesses available. 1 read and 1 write are used to allow host access to instructions when a
host access is pending, or to perform refresh when no host access is pending. The
remaining write access is unused.

Refresh is performed based on the REFINST SPR which is a 10-bit counter. Although the
current implementation of the chip has 300 instructions, the counter is allowed to count
from 0 to 1023 for future expandability of the instruction array. Since each instruction is
refreshed once every 1024 instruction cycles, the refresh period at 100nS/instruction is
102.4 uS.

A bit in the HARD_CONF SPR can be used to enable or disable instruction refresh; the
INST_REF_DIS bit disables instruction refresh when set (this is not desirable).

5.2. GPR and AOR Refresh
The GPR array allows 6 accesses per instruction cycle: 4 for reading source operands to
the ALU and MAC unit, and 2 for writing results of ALU and MAC unit operations.
The AOR array allows 6 accesses per instruction cycle: 1 for reading a source operand to
the AGEN,
3 for reading source operands to the ALU and MAC unit, and 2 writes of ALU and MAC
unit results.
In both the GPR and AOR array there are no available accesses for refreshing these
internal registers. Host access is governed by the ALU timing.

Refresh of internal registers at run-time is accomplished via common instructions
invoking SPRs tied to hardware support of the refresh operation. (Recall that SPRs are
static.) Those instructions provide refresh as an ALU function, NOP, BIOZ, HOST, and as
a MAC unit function, RFSH, which each employ the indirect addressing hardware support
provided by the REF and REFPT SPRs. We conservatively and empirically estimate a
refresh rate of 5 kHz to be sufficient.

The refresh mechanism should be transparent to the programmer because it is built in to
the most commonly used instructions, but some unusual user programs may warrant its

 87

consideration. In normal audio signal processing applications, use of the BIOZ instruction
for sample rate synchronization, and available ALU NOP pseudo instructions should
provide sufficient refresh. Additional refresh can be provided through use of the HOST
instruction or by using the MAC unit RFSH pseudo instruction instead of NOP in places
where preservation of MACRL is unnecessary.

The SPRs, REF and REFPT, control the refresh mechanism as follows: The reserved SPR
address called REF provides an indirect addressing mechanism. By addressing REF in the
operand field of an instruction, the content of REFPT is substituted as the operand
address. REFPT is a 10-bit counter which post-increments whenever the REF reserved
address is used as an ALU or MAC unit source operand address in an instruction,
regardless of whether that instruction is actually skipped. Any successful (not skipped) move
of REF to REF via either the ALU or MAC unit accomplishes one refresh that cannot be
inhibited. The newly incremented REFPT value is not available as the destination address
until the time at which the current destination address is decoded for the function unit
that caused the increment. The assertion of HALT_REF_DIS in the HARD_CONF SPR can
never override the use of the REF SPR, used as source and destination, as a means to
effect internal register refresh. Two moves of REF to REF on the same instruction line
using both the ALU and MAC unit doubles the refresh rate.

Because of the address mapping of GPRs from 0 to 455, and AORs from 512 to 963, the
LSB of the REFPT counter serves as the MSB of the address so that refreshes alternate
between GPR and AOR. Although REFPT is a 10-bit counter, the count is limited to the
number of GPRs and AORs physically residing on the chip in the current version.

 5.2.1. Internal Register Refresh during Suspension/Halt

The MAC unit and the ALU can both be used to perform internal register refresh
operations simultaneously which doubles the refresh rate.

When the chip is in the state of suspension (BIOZ bit of the HOST_CNTL register is set)
or in the halt state (because of a high halt bit in the HOST_CNTL register), the MAC unit
executes NOPs by default (designed to preserve MACRL) while the ALU executes the
HOST instruction which allows host access or refresh when no access is pending. In these
two states, the MAC unit can be forced to do refresh automatically by setting the
HALT_MAC_REF bit in the HARD_CONF SPR. This has the effect of doubling the refresh
rate, but the contents of the MACRL SPR will not be preserved. When the ESP2 program
resumes (i.e., comes out of halt or suspension) the MACRL will subsequently be
preserved, assuming no RFSH instructions in the MAC unit code.

The HALT_REF_DIS bit in the HARD_CONF SPR can be set to disable internal register
refresh by both the MAC unit and ALU during halt or suspension (this is not desirable).
The assertion of HALT_REF_DIS always overrides the HALT_MAC_REF bit.

 5.2.2. Internal Register Refresh Collision
Due to the interleaved nature of the MAC unit and ALU operand fetching, one of these
function units can be writing a new result to some internal register at the same time that
the other unit is being used to refresh it. This consideration is also applicable to the case
of host access, whose buss timing is governed by the ALU, either through the HOST

 88

instruction or during the suspension or halt states. The chip contains logic to prevent a
refresh operation from writing old data over newly created register contents.

Whenever REF is used as the destination in the MAC unit, the chip compares the contents
of REFPT to the destination address of the ALU from the preceding instruction cycle. If
the values are equal and the ALU instruction is not actually skipped (as in a conditionally
executed instruction), a NOP is performed by the MAC unit instead of RFSH.
Likewise, when REF is used as the destination in the ALU, the chip compares the contents
of REFPT to the destination address of the MAC unit from the same instruction cycle. If
the values are equal and the MAC unit instruction is not actually skipped, a NORFSH
pseudo is substituted in place of NOP in the ALU.

 89

6. SPR Hazards

Many of the SPRs in the chip provide special dedicated services which require
modification of the SPR contents as a result of ALU or AGEN operations. In those cases
these registers are being modified by means other than their usage as the destination
operand of some instruction. All SPRs can be read and written by the MAC unit and the
ALU (with the exception of a handful of registers which are read-only or write-only). A
conflict (a hazard) can occur at instances in which a particular SPR is modified in
association with its special service at the same time that it is written as the destination of
some MAC unit or ALU operation. The cases are all listed below:

ASSEMBLER NOTE: The assembler should detect these hazards and issue errors (or
warnings) because the outcome of these cases is indeterminate.

1. Specifying the CMR as the MAC unit destination on the same instruction line as an

ALU Jcc, JScc, RScc, or MOVcc.

2. Specifying the PC as the MAC unit destination at any time.

3. Specifying REPT_ST, REPT_END, or REPT_CNT as the MAC unit destination on the

same instruction line as an ALU REPT (or EXIT pseudo) instruction, or on the last
line of a REPT block.

4. Specifying the PCSTACK0,1,2,3 SPRs as the MAC unit destination on the same

instruction line as a JScc or RScc.

5. Specifying a JScc, RScc, or Jcc on the penultimate queued instruction line of a REPT

block.

6. Specifying a region BASE SPR as a MAC unit destination on the same instruction line

as the AGEN performing an UPDATE BASE operation on the same register.

7. Specifying either SPR, HOST_GPR_DATA or HOST_ESP_FACE, as a MAC unit

destination at any time should be cited because it could cause conflict with a host write
to that register as a host interface register. (warning)

 There is a conflict specifying HOST_CNTL_SPR as a MAC unit source at any time
because the host may be writing to it as an interface register at the same time that the
MAC unit is reading from it. (warning)

8. Specifying CCR as the MAC unit destination when the ALU operation on the same

instruction line is not MOV (or NOP), MOVcc, Jcc, JScc, RScc, HOST
(HOSTNORFSH), BIOZ (BIOZNORFSH), or REPT. (warning)

 Specifying CCR as the ALU destination of an instruction which is not MOV, MOVcc,
RScc, HOSTNORFSH, or BIOZNORFSH. (warning)

9. The indirection mechanism provides an automatic increment or decrement of the

pointer SPRs via the INDIRINC and INDIRDEC SPRs. Consequently, the following
indirection hazards can occur:

 1) MAC unit write to INDIRG on the same program line as an AGEN reference to
INDIRINC or INDIRDEC.

 90

 2) MAC unit write to INDIRD when the D operand is INDIRINC or INDIRDEC, or to
INDIRE when the E operand is INDIRINC or INDIRDEC. ALU write to INDIRA when
the A operand is INDIRINC or INDIRDEC, or to INDIRB when the B operand is
INDIRINC or INDIRDEC.

 3) MAC unit write to INDIRINC or INDIRDEC when INDIRF points to itself. ALU
write to INDIRINC or INDIRDEC when INDIRC points to itself. (This last MAC and
ALU hazard is not detectable by the assembler, in general.)

 91

7. External Data-Memory Interface

The interface to external memory is comprised of two pieces:
1) the Address Generator function unit, AGEN, which performs modulo address
calculation in its fundamental mode,
2) the external memory buss comprising an address and data buss, which provides the
physical connection to external memory (not shown in Figure 5).
This memory port contains the DIL and DOL SPRs which act as the data interface
between external memory and the ALU and MAC unit. (See Chip Architecture.)

7.1. Address Generator (AGEN) Architecture

add

AOR
452 x 24

G

8 to 1 MUX

compare subtract

BASE

END

SIZEM1

2 to 1 MUX
sign

address

SIZEM1, and END SIZEM1, and END SIZEM1, and END

SPRs:

region V BASE,
SIZEM1, and END

24 x 3

W buss

1

24 LSB

26

26

SPRs:SPRs:SPRs:

region Q BASE,region P BASE,region I BASE,

- - -

Figure 5. Address Generator

 92

A partial diagram of the Address Generator unit is shown in Figure 5. The Address
Generator calculates absolute addresses for the external memory interface once every
instruction cycle (100nS). It consists of three 26-bit adders, eight BASE SPRs, eight END
SPRs, and eight SIZEM1 SPRs, the 24-bit unsigned SPRs serving to partition eight
addressing regions. Relative address offsets held in 24-bit unsigned AORs are selected by
the G operand field of the instruction. The programmer dereferences an AOR to make an
indirect access of external memory.

AGEN code can be automatically generated for the programmer by the assembler. Three
bits in the external-memory control-field of the micro-instruction determine which of the
eight regions is accessed. The programmer's code either states the desired region, or it is
implicit from the declaration of the AOR. The memory location and purpose of the eight
regions are each determined by the contents of the corresponding region control
registers (BASE, SIZEM1, and END). The region control registers can be automatically
initialized by the assembler from values implicit in the programmer's region declarations.
These regions can each be configured as delaylines, tables, or I/O space through the
appropriate setting of the region control registers. This becomes apparent by examining
the nature of the calculations automatically performed in the AGEN:

7.1.1. AGEN Address Calculation
At every instruction cycle the following external memory address calculations are
performed using the specified address offset register and the region control registers
from the region specified in the micro-instruction.

address = AOR + BASE
if address > END

address = address - (SIZEM1 + 1)

'address' is an absolute external memory address. AOR denotes one of the Address Offset
Registers. The SIZEM1 SPR contains the size of the region - 1; this deficit is necessary
in order to represent a table which is the full size of physical memory, and accounts for
the correction factor '1' appearing in Figure 5. Although the BASE, SIZEM1, END, and
AOR are 24-bit unsigned, the calculations are carried out at 26-bit two's complement to
prevent the first equation from overflowing and to guarantee the correct sign in the result
of the comparison.

7.1.2. Plus-One Addressing Mode
The first calculation can also be executed as

address = AOR + BASE + 1

under instruction control. This addressing mode (not shown in Figure 5) is useful in
acquiring neighboring addresses as for interpolation operations. No register is
permanently modified as a result of this calculation which occurs prior to external
memory access.

 93

7.1.3. Extent of the Modulo
These equations allow circular addressing within a predefined region because of the region
END detection and modulo addressing. This modulo scheme of addressing restricts the
AOR offset range to 0 through SIZEM1 + 1, for any value of BASE within the modulus.
Since the modulo does not go to infinity, it is easy for computed AOR offsets to land
outside of the modulus, so programmers should beware.

Regions can reside anywhere in physical memory based on the contents of the region
control SPRs. Regions cannot span absolute address zero.

Multiple delaylines coexist in the same region by stringing them end to end and
addressing them using different offsets within the modulus. Delaylines will move only
within the extent of the defined region by decrementing the region BASE in a modulo
fashion described in the section UPDATE region BASE. Therefore, the operation of
delaylines will not impact data in other regions of memory.
Modulo addressing is always with respect to the region, not to the individual delayline.

7.1.4. Other External Memory Configurations

By setting the END SPR to the value of the maximum physical memory location, the
region simplifies to a table not having modulo addressing. Tables are distinguished from
delaylines by fixing the BASE SPR. In this case the BASE always points to the first
location of the table. Tables can certainly be implemented, however, without defeating the
modulo addressing hardware scheme.

Setting BASE to zero and END to the value of the maximum physical location defeats
modulo addressing while admitting absolute addressing, in the AORs, suitable for
peripheral I/O devices. The recommended use of AORs is to hold relative address offsets
with respect to the associated region. I/O addressing can certainly be implemented in a
relative fashion without the need to defeat the modulo addressing hardware. In any case,
for absolute addressing the MUX_ADDR bit in the HARD_CONF SPR must be low (linear
addressing). All these configurations can be determined by the programmer in the
declarations. (See the Software Spec. for more.)

7.1.5. UPDATE region BASE
 A built-in method for updating the region BASE SPR under program control is also
provided via the AGEN. This mechanism is especially useful for decrementing the BASE
register every sample period in a modulo fashion. This is desirable when programming
delaylines. As before, the AGEN calculates a new address using the contents of the AOR
(pointed to by the G operand field) as the offset amount. The only change is that the
AGEN opcode field of the instruction demands that the address be written to the external
address buss as well as back into the BASE SPR. The AOR, in this addressing mode,
becomes a post-increment to the region BASE SPR. This explains the feedback path in
Figure 5.

address = AOR + BASE
if address > END

address = address - (SIZEM1 + 1)
BASE = address

 94

The new BASE value is available to the MAC unit, ALU, and AGEN on the next instruction
cycle for use both in AGEN addressing and as a source SPR. To modulo decrement the
BASE by 1, set AOR equal to contents of SIZEM1. To decrement the BASE by 2, set AOR
equal to SIZEM1 - 1, and so on. Decrementing can be performed indefinitely, the BASE
remaining within the modulus.

ASSEMBLER NOTE: If BASE updating is specified in a given instruction, a collision
could occur between the AGEN and the MAC unit trying to write to the same region BASE
SPR because the two units are operating with the same timing. This hazard should be
recognized and flagged as an error by the assembler; chip operation is
unpredictable.

95

7.2. AGEN Instructions
The AGEN opcode field consists of six instruction bits. Three of the bits are used for
selecting one of eight regions. The remaining three bits are used to select from the
following operations:

NOP cycle on the external memory buss.
External memory RD.
External memory RD, then UPDATE BASE.
Plus-One addressing, external memory RD.
External memory WR.
External memory WR, then UPDATE BASE.
Plus-One addressing, external memory WR.
UPDATE BASE.

During an AGEN NOP, the external memory buss is tristated. The last operation
(UPDATE BASE) allows UPDATE of the region BASE SPR while tristating the external
memory buss.
See the ESP2 Language and Software Specification for the proper syntax of AGEN
instructions.

7.3. Accessing the Region Control Registers and AORs
The region control registers (BASE, SIZEM1, and END) are mapped as SPRs for use as
source/destination operands by the ALU and MAC unit. This can be useful for having
more than eight physical regions of external memory active at a time, since the contents
of these registers can be modified under program control.

In the assembler, the regions are called I,P,Q,R,S,T,U,V. These are respectively assigned
in microcode to: 0,1,2,3,4,5,6,7. So references to BASEP, SIZEM1U, or ENDT, for
example, denote a region control SPR in a particular region.

The AORs can also be accessed by the ALU and MAC unit for computing address offsets in
the running program. The ALU provides the ADDV and SUBV instructions for unsigned
arithmetic operations. Because of bandwidth limitation on the AOR memory, AORs
cannot be used as the E operand of the MAC unit. (Refer to the section on Register Usage.)
When AORs are not being used to hold address offsets, they can be used for any general
purpose.

See the Pipeline section in the Software Spec. for a simple chart of latencies in the access
of the registers discussed above.

7.4. External Memory Access

The external memory interface port consists of a 24-bit address buss, a 24-bit data buss,
the pin signals Row Address Strobe (RAS\), Column Address Strobe (CAS\), Memory
Read/Write (MR/W\), and Memory Request (MEM_REQ\). The MEM_REQ\ pin is
asserted by the ESP2 to signal an upcoming external memory cycle. When the
MEM_REQ\ signal is asserted, the CAS\ and RAS\ signals of the ESP2 will assert during
the next memory cycle. The MEM_REQ\ and MR/W\ pins each require a pull-up
resistor.

96

CLK

RAS\

CAS\

MADDR

MR/W\

MDATA

MEM_REQ\

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

NOP RD NOP WR NOP/exo.

address

ESP2 External Memory Access Timing

row column

(muxed) (static)

LOW
hiZ
HIGH

valid

ESP2 RD ESP2 WR exogenous

Tstate

memory
cycle

datadata

LOW
hiZ
HIGH

Figure 6. Timing with refresh disabled. The MUX_ADDR bit selects the multiplexed or
static addressing modes on-the-fly.

The timing diagram in Figure 6 illustrates activity on the memory buss over five
instruction cycles for several operations. One instruction cycle corresponds to four
Tstates which corresponds to one memory cycle. Since addressing can be either
multiplexed (DRAM) or linear (SRAM), the diagram shows both forms. The signals RAS\
and CAS\ are asserted regardless of whether multiplexed or linear addressing is
performed. This is because the RAS\ signal is sometimes used for chip-enable while CAS\
is sometimes used for output-enable of static RAM chips. In the event that the RAS low
time provides insufficient access time for SRAMS, an upper address line with a resistor
pullup can serve as a chip select providing a 3.5 clock cycles worth of access time. Notice
how the MR/W\ and MEM_REQ\ signals are driven high by ESP2 before and after there
assertion by the ESP2. Driving high at the end of the cycle ensures good rise time
characteristics as opposed to a resistor pullup. These signals should have resistor pullups
to hold them high while they are tristate by the ESP2

The ESP2 will tristate (release) the pin signal MR/W\ and the external memory buss
(address and data) during AGEN NOP or UPDATE BASE (no access) instruction cycles,
and also during halt state and BIOZ suspension where the AGEN is designed to execute
NOPs. This feature can be used to allow exogenous hardware or other running ESP2 chips
access to the same external memory. Since the MEM_REQ\ pin tristates during unused
cycles, it can be driven by exogenous hardware to force the ESP2 to generate a
RAS\/CAS\ sequence on the very next memory cycle. The assertion of MEM_REQ\
by an exogenous source does not force the ESP2 to release the external memory

 97

buss, so buss contention is possible. For this reason it is recommended to allow
access by an exogenous source only during the halt and indefinite suspension
states.

When multiple ESP2s are set up to share the same external memory, however, one of the
chips can automatically drive the RAS\ and CAS\ pins by watching its MEM_REQ\ input
pin which is wire-ORed between all the running ESP2s. The memory accesses must be
scheduled in the AGEN code of each chip so as to avoid buss contention. This presumes
that the chips are running in synchronization with one another which can be accomplished
by a system reset.

7.4.1. External Address Buss
The external memory address buss is controlled by the ESP2 for the purpose of supplying
a 24-bit address to external memory and peripheral I/O devices. A bit-selectable mode is
available on-the-fly which provides multiplexed addressing (RAS\/CAS\) for accessing
dynamic RAM (DRAM), in sizes from 64K to 16M, when the MUX_ADDR bit in the
HARD_CONF SPR is high (set). Otherwise (reset), linear addressing for static RAM
(SRAM) or peripheral I/O is selected. When the MUX_ADDR bit is asserted from the
MAC unit, the new AGEN addressing mode is activated immediately (i.e., in the same
instruction cycle). If asserted from the ALU, the new addressing mode is activated on the
next instruction cycle.

Multiplexing is illustrated in Table 8 for DRAMs of various sizes. The Table shows what
actually appears at the address pins when either mode is selected. For example; when a
256K by n-bit DRAM is connected, what actually appears at the ESP2 address pin called
A8 is the address bit A0 when RAS\ (Row Address Strobe\) is asserted, and address
bit A16 when CAS\ (Column Address Strobe\) is asserted.

The wordlength, n, of the physical DRAM does not impact the address pin connections.
Further, DRAMs of various size may coexist in a system.

The address pin names, MADDR[23:0], have been shortened in the Table.

 Table 8. External Address Pin Connection

 98

PIN
NAME

A23
A22
A21
A20
A19
A18
A17
A16

A15
A14
A13
A12
A11
A10
A9
A8

A7
A6
A5
A4
A3
A2
A1
A0

SRAM
mode: linear

A23
A22
A21
A20
A19
A18
A17
A16

RAS\/CAS\
size: any

A15
A14
A13
A12
A11
A10
A9
A8

A7
A6
A5
A4
A3
A2
A1
A0

DRAM
multiplexed

A23
A22
A21
A20
A19
A18
A17
A16

RAS\/CAS\

any

A11/A23
A3/A22

A10/A21
A2/A20
A9/A19
A1/A18
A8/A17
A0/A16

A7/A15
A6/A14
A5/A13
A4/A12
A3/A11
A2/A10
A1/A9
A0/A8

DRAM
multiplexed

A23
A22
A21
A20
A19
A18
A17
A16

RAS\/CAS\

64K

A7/A15
A6/A14
A5/A13
A4/A12
A3/A11
A2/A10
A1/A9
A0/A8

DRAM
multiplexed

A23
A22
A21
A20
A19
A18
A17
A16

RAS\/CAS\

256K

A8/A17
A0/A16

A7/A15
A6/A14
A5/A13
A4/A12
A3/A11
A2/A10
A1/A9

DRAM
multiplexed

A23
A22
A21
A20
A19
A18
A17
A16

RAS\/CAS\

1M

A9/A19
A1/A18
A8/A17
A0/A16

A7/A15
A6/A14
A5/A13
A4/A12
A3/A11
A2/A10

DRAM
multiplexed

A23
A22
A21
A20
A19
A18
A17
A16

RAS\/CAS\

4M

A10/A21
A2/A20
A9/A19
A1/A18
A8/A17
A0/A16

A7/A15
A6/A14
A5/A13
A4/A12
A3/A11

DRAM
multiplexed

A23
A22
A21
A20
A19
A18
A17
A16

RAS\/CAS\

16M

A11/A23
A3/A22

A10/A21
A2/A20
A9/A19
A1/A18
A8/A17
A0/A16

A7/A15
A6/A14
A5/A13
A4/A12

The DRAM sizes shown in Table 8 are typical of the industry standards. Since DRAM
address pins are multiplexed, every pin added increases memory size by a factor of 4.
Typical DRAM chips may not be fast enough to interface to the ESP2 running at full
speed. The DRAM access time must be at most 50 nS when running the ESP2 at the
system clock rate of 40 MHz (10 MHz instruction rate). Slower DRAM demands a slower
clock rate. Very high speed SRAM is commonly available, hence the two address buss
modes.

 99

The external memory buss is asserted for every AGEN instruction type excepting
a NOP and an UPDATE BASE (no access) instruction. Since those two operations
do not access external memory, the address and data buss are tristated. The
external memory buss is also tristated during halt or when the chip is in
suspension due to the BIOZ instruction, for then the AGEN is performing NOPs.

7.4.2. External Memory Data-Interface

The interface from the chip's internal computation units (MAC and ALU) to external
memory is supplied through the AGEN's Data Input Latches (DILs) and Data Output
Latches (DOLs). A 4-bit field in the micro-instruction along with a read/write bit
identifies one of these registers to AGEN. The assembler can organize the use of these
registers into FIFO and cache structures.
There are 16 DILs and 16 DOLs, all 24 bits wide and mapped as SPRs. These registers are
accessed by the computation units as sources and destinations like any other SPR.

The AGEN provides a feature called magnitude truncation (to 16 or 24 bits) of DOL out
to external memory. The 24-bit DOL is assumed to hold the MSBs of a larger word in
two's complement. Magnitude truncation to 24 bits or less is desired. This feature is
controlled by two bits in the HARD_CONF SPR: The MAG_TRUNC bit enables
magnitude truncation when it is high. When set from the MAC unit, magnitude truncation
becomes active on the same program line. When set from the ALU, magnitude truncation
is activated on the next queued program line. The TRUNC_WIDTH bit sets the
truncation width to 24-bits when it is high, or 16-bits when it is low.

In the case of 24-bit truncation width, the magnitude truncation algorithm is as follows:

 if (DOL < 0) external memory = DOL + $1
 else external memory = DOL

In the case of 16-bit truncation width, the algorithm is:

 if (DOL < 0) external memory = (DOL + $100) & $FFFF00
 else external memory = DOL & $FFFF00

For 16-bit truncation width, the 8 LSBs of the 24-bit result are set to $00 which allow
development of algorithms for 16-bit target systems within development systems having
24-bit external memory.

The selected algorithm is performed in the AGEN as DOL is sent out to external memory;
the DOL is not permanently modified. For magnitude truncation somewhere in between
16 and 24-bits, one can employ the various shifting mechanisms in the computation units
prior to magnitude truncation.

 100

7.5. External DRAM Refresh

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

disabled CAS\ before RAS\ ESP2 acc. NOP/exo. RAS\-only

ESP2 External Memory Refresh Timing

LOW
hiZ
HIGH

ESP2 access exogenous

CLK

RAS\

CAS\

MADDR

MR/W\

MDATA

MEM_REQ\

R/W\

memory
cycle

Tstate

data

row column

(muxed)

LOW
hiZ
HIGH

refresh NOP/ NOP/
NOP/

Figure 7. Refresh enabled after first cycle. Refresh is associated with AGEN NOP when
there is no MEM_REQ\ on the previous cycle.

The ESP2 supports both DRAM and SRAM as external memory, and both memory
types may be coexistent in a system design. There exists an automatic external
DRAM refresh mechanism built into the ESP2. This mechanism acts in conjunction with
the address counters built into most all commercial DRAM chips. The DRAM's address
counter controls a refresher, also inside the DRAM chip, which becomes activated by the
appearance of the pin signal CAS\ before the pin signal RAS\. ESP2 supports the CAS\
before RAS\ refresh mode for total refresh. Notice in Figure 7 how the MR/W\ signal is
driven high by ESP2 during a refresh cycle. Depending upon the system design when
SRAM is present, be aware that the refresh mechanism may cause a read of SRAM,
putting data on the external memory buss.

A second mode of refresh, RAS\-only refresh, is not fully supported by ESP2 because it
requires a refresh address to appear on the external memory buss. The RAS\-only
refresh signal can be made to emanate from the ESP2 RAS\ pin, however. Do not allow
the address buss to become undefined during a RAS\-only refresh as this can corrupt
DRAM regardless of the state of the MR/W\ or CAS\ lines.

These two modes of refresh are determined by the settings of two bits in the
HARD_CONF SPR. The XMREF_CASDIS bit, when set, yields RAS\-only refresh. When
the XMREF_DIS bit is set, both modes of refresh are disabled. (XMREF_DIS overrides
XMREF_CASDIS.) Both bits low yield the default mode, CAS\ before RAS\ refresh. All
settings are independent of the MUX_ADDR bit.

When activated, the ESP2 external DRAM refresh mechanism operates transparently at
run-time, halt, or during BIOZ suspension. At run-time the refresh mechanism engages

 101

only when the AGEN unit is executing NOP or UPDATE BASE (no access) instructions
and the MEM_REQ\ pin signal was not asserted by any source (exogenous or ESP2
itself) on the previous memory cycle. During halt or suspension, recall that the AGEN
executes NOPs, so refresh will automatically occur on every memory cycle as long as the
MEM_REQ\ signal was not asserted on the previous cycle. Recall that the act of
reading or writing external memory at N sequential locations over a specified
time period also accomplishes total refresh, where N is the square root of the
external DRAM size.

Note that if an exogenous device takes over the external memory buss and exercises
MEM_REQ\, it will prevent ESP2 from refreshing DRAM. If the external memory buss is
usurped for extended periods, the exogenous device must be responsible for refreshing
DRAM.

7.6. Initializing or Accessing External Memory from the System Host

The ESP2 does not provide internal hardware for direct access of external memory by the
system host through the ESP2. The ESP2 tristates its external memory buss during the
states of halt and BIOZ suspension, and during NOP or UPDATE BASE (no access)
instruction execution in the AGEN. It is at these times that exogenous hardware (e.g., the
host itself) can be given direct access to external memory over that same buss.

If we allow the host to take-over the ESP2 external memory buss, then when external
DRAM is used and there is no MEM_REQ\ pin signal assertion from either the ESP2 or
the host, the DRAM will always be automatically refreshed by ESP2 on the next
memory cycle if the CAS\ before RAS\ refresh mode is activated in the HARD_CONF
SPR. To avoid buss contention with a running ESP2 program making random access, it
may be preferred to transfer external memory data to/from the host (or some DMA mechanism)
during halt or indefinite suspension. But if the transfer needs to occur at run-time,
various methods may be employed which require a very simple ESP2 program to supervise
indirect transfer through the ESP2:

One such procedure might incorporate the ALU BIOZ instruction. This instruction
indirectly monitors the IOZ input pin from the synchronization interface. The IOZ pin will
typically be hardwired to the sample rate clock (LRCLK). The implication here is that
were the IOZ pin involved in the transfer of audio data to/from external memory, then the
transfer could occur no faster than the system sample rate. Under these assumptions,
the standard host/ESP2-register interface would most likely be used. In that case, some
GPR would be designated to hold the transferred data while some AOR would be
designated to hold the external memory address offset. Of course some protocol would
need to be established between the host and the ESP2 program, but this protocol is
malleable.

A second procedure might incorporate the IFLAG and OFLAG pins from the
synchronization interface. There is no dedicated ALU instruction to monitor that input
pin, but an image of the IFLAG pin appears in the CCR. There it is called IFLG and is
updated on a per instruction basis. Therefore the IFLAG pin can be easily monitored by
the ESP2 program based on the IFLG and NIFLG Conditions. Using this scheme, data
would be transferred to/from the 8-bit HOST_ESP_FACE_B2,1,0 host interface registers.
The ESP2 would transfer data directly into or out of the concatenated 24-bit SPR image
(HOST_ESP_FACE) of these registers, bypassing the standard host/ESP2-register
interface. The ESP2 could then signal back to the host via the OFLAG pin. Of course,

102

some software protocol between the host and the ESP2 program would need to be
established. This second procedure has the advantage that data transfer occurs at the
instruction rate.

It may be likely that these two procedures would find use while the chip is executing some
application program. So, some scheme must be invented to vector the running ESP2
program to this external memory host-access routine after it has been overlaid.
Vectoring by host load of the PC at run-time, using the standard host/ESP2-
register interface, is not recommended because of indeterminate results. An
alternative vectoring procedure is given in the Applications section.

 103

8. Serial Interface

The asynchronous serial interface consists of 16 24-bit serial data SPRs (called SER0L,
SER0R, SER1L, SER1R, ..., SER7R), each L/R pair of which can be used for input or
output to A/Ds, D/As, other DSP chips, etc. These SPRs are grouped into eight stereo
pairs, each pair multiplexed on its own serial data pin (SER[0:7]). The SER data SPRs are
double buffered so that both left then right channel data coming into the chip in one
sample period are accessible to the ESP2 at the start of the next sample period.
Likewise, data written to the left and right SER data SPRs by ESP2 during one sample
period will be sent out in the next sample period, left channel followed by right. That is to
say, there exists a latency equal to one sample period for serial data input or output. This
design allows ESP2 access to SER data SPRs at any time throughout the sample period
with no hazards.

Each of the individual serial data pins (SER[0:7]) can be programmed as input or output,
and each can be assigned to either of two sets of asynchronous serial clocks (LRCLK,
WCLK, and BCLK) via the SER_CONF SPR. This accommodation for simultaneous
communication between devices having different serial timing requirements opens the
door to applications such as sample rate conversion.

8.1. Serial Interface Control Registers
Because of the great diversity of definitions for serial clock timings amoung the
commercially available D/As and A/Ds, the best approach is to make the serial interface
fully programmable. The serial interface can be made to conform with I2S justification or
the popular 'right justified' format. Format programmability can be achieved using a
BCLK counter and the following serial interface control registers:

 Table 9. Serial Interface Control Registers

WCLKL_ST
WCLKL_END
LRCLK_END
WCLKR_ST
WCLKR_END
LRCLK_MOD

Defines the start of WCLK and left serial data.
Defines the end of WCLK and left serial data.
Defines the end of LRCLK.
Defines the start of WCLK and right serial data.
Defines the end of WCLK and right serial data.
Defines the count modulus less 1 of the BCLK counter.

See the example for settings rules. By duplicating the BCLK counter and serial interface
control registers, two independent timing sets are created with each serial data line
assigned to either timing set. These 8-bit serial interface control registers are
concatenated into SPRs called SCLK0_REG0 and SCLK0_REG1 both defining timing set 0,
and SCLK1_REG0 and SCLK1_REG1 defining timing set 1; see those SPRs for the exact
format.

Observing the layout of the HARD_CONF SPR (see the section on Special Purpose Registers), any of
the BCLK[0:1], and/or WCLK[0:1], and/or LRCLK[0:1] serial clock signals may be
selectively enabled to drive the associated pins. When any of those signals are not
enabled, the associated pin becomes a high impedance input. Any subset of the ESP2
serial clock pin signals may be selected as inputs independent of all the other clock pins.

 104

8.2. LRCLK
The LRCLK (left right clock) signal determines the channel, left or right. If the ESP2 is
driving the LRCLK pin, it will assert (rise) after the BCLK counter reaches the value in
LRCLK_MOD (see the example). Due to that assertion the BCLK counter resets and
begins the count again, counting the number of bit clocks since the beginning of the sample
period marked by the rising edge of LRCLK. The falling edge of LRCLK is defined by
LRCLK_END.

The BCLK counter will reset whenever the LRCLK signal transits high no matter who is
driving the associated LRCLK pin. The SER data SPRs are latched as well on the positive
transition of LRCLK.

The system sample rate can be defined by LRCLK as generated by ESP2. If this is
desired, then the exact rate can be expressed in terms of: 1)the system clock (CLK), 2)the
BCLK modulus (LRCLK_MOD+1), and 3)the BCLK divide rate set in the HARD_CONF
SPR. See Figure 8.

When some other device is driving the LRCLK pin, it is not a requirement to load the
LRCLK_END and LRCLK_MOD serial interface control registers. When some other
device is driving LRCLK and the BCLK and WCLK pins as well, it is not important how
any of the serial interface control registers are set.

8.3. WCLK
The WCLK (word clock) signal always frames the data (see the example). The
justification and duration of the WCLK pin signal output (hence SER[0:7] pin data) is
determined by comparing the unsigned contents of WCLKL_ST, WCLKL_END,
WCLKR_ST, and WCLKR_END to the BCLK counter. This scheme gives flexibility on the
separation of right and left channels, the justification of the data transfer with respect to
LRCLK transitions, and the number of bits of data transfer up to the full 24-bit width of
the SER data SPRs.

If no other chip in the system requires WCLK, the ESP2 may generate its own. As an
example in the case that some exogenous device provides LRCLK and BCLK but does not
provide WCLK, the ESP2 can generate WCLK for itself (and any other chip requiring it) while its
own LRCLK and BCLK pins are configured as inputs. This is achieved through the proper
setting of the serial interface control WCLK registers and by configuring the WCLK pin
signal as output via the HARD_CONF SPR. This extended functionality is eminently
useful while the concept is applicable to other cases.

 105

8.4. BCLK
The BCLK (bit clock) counter is zeroed by the positive transition of the LRCLK signal
regardless of whether the associated LRCLK pin is being driven by an exogenous source or
by the ESP2 itself. The BCLK counter is also zeroed when the chip is reset via the RES\
pin. The BCLK pin is disabled (made an input) by RES\. When the BCLK pin is enabled,
oscillations at the BCLK pin output are always observed. The BCLK divide rate, shown in
Figure 8, is set in the HARD_CONF SPR (see the SPR Descriptions).

The asynchronous BCLK pin signal controls the clocking-in of SER[] data to internal shift-
registers. Data is valid on the rising edge of the BCLK signal for input or output data.
Because the serial interface is asynchronous, the number of bit clocks per sample period
need not be an exact integer multiple of the sample period, but the prescribed number of
bit clocks must not exceed the actual sample period.

SYSTEM
 CLOCK

40 MHz

 /4
10 MHz Instruction Cycle Rate

 /n

n = 1, 2, 4, or 8

counter

BCLK pin

Figure 8.

clock divider divide rate

BCLK

R

LRCLK

n <= CLK / (4 Mod Fs)

 CLK

Fs = sample rate, Mod = number bit clocks per sample period

8.5. An Example of Serial Interface Control Register Settings

It must be emphasized that the ESP2 serial interface is designed to be asynchronous. In
light of that, the example timing diagram in Figure 9 might be used to understand how
serial data is transmitted or received under any I/O configuration of the serial clock pin
signals, LRCLK, WCLK, and BCLK.

The example in Figure 9 is also intended to provide rules for setting the serial interface
control registers. Remember that when serial clock pins are driven by an exogenous
device, the settings of the corresponding serial interface control registers become
irrelevant.

 106

LRCLK

SER[0:7] LEFTLEFT RIGHT RIGHT

BCLK

LRCLK

WCLK

SERIAL INTERFACE TIMING

SER[]
N = 24

WCLK

0 1 2 3 16 17 18 19 20 21 22 23 31 32 3324 25 26 27 284 5 6 7 8 9 10 11 12 13 14 15 29 30 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2

detail

counter

23 0 2323 0

MSB first

Figure 9. Example Serial Interface Clock Cycle.
 Given: 64 (Mod) bit-clocks (BCLK) per sample period, N-bit data, LRCLK output 50% duty cycle, I2S justification.
 Serial interface control register values = BCLK counter value before desired transition.
 0 <= all serial interface control register values < Mod . Mod >= 2 N + 2.
 Mod bit clocks are <= actual sample period.
 To reverse the SER[] bit stream, use ALU's BREV instruction.

 WCLKL_ST = 0, (not equal to Mod - 1)
 WCLKL_END = WCLKL_ST + N <= LRCLK_END
 LRCLK_END = 31, (N <= LRCLK_END < LRCLK_MOD)
 WCLKR_ST = 32, (LRCLK_END < WCLKR_ST <= LRCLK_MOD - N)
 WCLKR_END = WCLKR_ST + N <= LRCLK_MOD

 107

 LRCLK_MOD = Mod - 1

 108

8.6. Serial Interface Rules
- It is recommended that SER data access not be programmed on the queued instruction
line following a BIOZ instruction. This is because the IOZ input pin is often connected to
the signal LRCLK which latches the SER data SPRs. The queued instruction line following
BIOZ is executed prior to suspension; this means that a SER access there might get old
data.

- It is further recommended that all SER data access occur near the top of the program.
The synchronization instruction, BIOZ, allows program main loops to occasionally exceed
the sample period. SER data access at the end of a main loop might miss the launch
window under that circumstance.

- Serial data is always left-justified within 24-bit SER data SPRs.

- The WCLK signal always frames the SER[] data. The ESP2 always requires the WCLK
signal, either from an exogenous source or self-generated.

- In general, the transitions of LRCLK, WCLK, the BCLK counter, and SER[] data all
occur on the negative transition of BCLK. Each SER[] data bit is latched on the positive
transition of BCLK.

- If the serial interface control registers are set up for an N-bit transmission or reception
frame, then
24-N LSBs of the SER data SPRs will be transmitted or received as logical zero
regardless of their actual value.

8.7. Serial Reset and Synchronization

In revision three of the chip, two bits are added to the hard_conf register. These bits are
the SERIAL_RESET, and SERIAL_SYNC bits. The bits are added to facilitate the
initialization and synchronization of the two independent timing generators when either
one or both are driven by the ESP2.

The SERIAL_RESET bit can be set to put the serial timing generator into a known state in
the event when the serial timing control registers are modified. When this pin is set, the
bit clock counters are reset to 0 and the clocks signals are driven in the corresponding
state, LRCLK[0:1] = 1, WCLK[0:1] = 0. The BCLK[0:1] pins are also held low. Once the bit
is cleared, normal functionality is resumed. This bit can be very useful for production
testing of the chip.

The SERIAL_SYNC bit can be used to synchronize serial timing generator 1 to the low to
high transition of serial timing generator 0. This is very useful in the event that timing
generator 1 is running at a multiple of timing generator 0's rate, especially if timing
generator 0 is driven from an external source. Whenever it is desired that one timing
generator run at a multiple of the base sample rate, timing generator 0 should be set to

 109

the base sample rate, timing generator 1 should be set to the multiple rate, and the
SERIAL_SYNC bit should be set to synchronize the two generators.

 110

9. Halt and Suspension States

9.1. Halting the Chip
The chip can be halted unconditionally by writing the HOST_HALT bit of the HOST_CNTL
interface register. The HOST_CNTL interface register is accessible directly from the
system host, and is also accessible (in a limited way) to the ALU and MAC unit as an SPR
(HOST_CNTL_SPR).

A mechanism for host-supervised halting under ESP2 program control exists through the
HALT pseudo instruction of the ALU. That instruction is used to set the ESP_HALT bit
in HOST_CNTL_SPR. If the ESP_HALT_EN bit (located in the HOST_CNTL interface
register) is set by the system host, the chip will enter into a halt state when a HALT
pseudo is encountered. If the ESP_HALT_EN bit is low, then the ESP_HALT bit is
ignored. Program debugging is facilitated by placing HALT pseudo instructions
throughout a program as breakpoints. The breakpoints can be activated by the host
setting the ESP_HALT_EN bit, or they can be deactivated to allow continuous execution of
the program. Recall from the ALU's HALT pseudo instruction description that there is a
1 instruction cycle latency in the execution of the HALT. This results in the execution of
the queued instruction line following HALT before the chip enters into the halt state.

The chip can be taken out of the halt state by having the host clear the ESP_HALT and
HOST_HALT bits of the HOST_CNTL interface register.

At run-time, when the IOZ_EN bit of the HOST_CNTL interface register is high, the BIOZ
instruction typically causes some amount of time spent in suspension depending upon the
program's length with respect to the presumably longer sample period. A less obvious
method for 'halting' the chip, then, is to bring the IOZ_EN bit low. By doing so, the host
disables ESP2's observation of IOZ input pin activity subsequent to this IOZ_EN event,
hence suspending program execution indefinitely after a BIOZ instruction is encountered.
This indefinite suspension occurs after a BIOZ instruction because the IOZ status bit
in the CCR will never transit high, when the enable bit IOZ_EN is low, to allow the
program to resume. (The actual suspension takes place after either the first or second BIOZ instruction

following the event, depending upon whether the IOZ status bit was already set at the time of the event.)

The chip can be taken out of an indefinite suspension by having the host set the IOZ_EN
bit of the HOST_CNTL interface register.

9.2. Chip State during Halt and Suspension
To preserve the state of the chip during a halt or BIOZ suspension, the MAC unit, ALU,
and AGEN must perform operations which are nondestructive to the state of GPRs, SPRs,
and AORs. As long as the INST_REF_DIS bit of the HARD_CONF SPR is not asserted,
micro-instructions will always be refreshed regardless of whether the chip is in a
halt/suspension state. The SPRs are fabricated using static memory, so refresh is not an
issue there. The GPRs and AORs, however, are fabricated using dynamic memory, so
refresh of those registers must be considered.

While halted or suspended the PC is frozen, therefore execution will resume at the next
unexecuted instruction line in the queue. The HALT_JUMP bit, in the HOST_CNTL
interface register and in HOST_CNTL_SPR, monitors the enforcement of normal run-time
latency when the ALU instruction queued for execution following halt/suspension (HALT

 111

(ESP_HALT), HOST_HALT, or BIOZ) is from the JMP class (Jcc, JScc, RScc). In these
cases this HALT_JUMP monitor bit will go high. When the program resumes,
HALT_JUMP will automatically clear. While the chip is halted or indefinitely suspended,
the PC may be loaded via the standard host/ESP2-register interface for the purpose of
vectoring the program coming out of halt/suspension. If the PC is loaded via the interface
at this time, the HALT_JUMP bit is automatically cleared.

 112

System host loading of the PC does not take the chip out of the halt nor the suspension
states. It is not recommended to load the PC from the host interface at run-time
because the results are indeterminate. It is neither recommended to load the PC from
the host interface during suspension unless the suspension is indefinite.

The MAC unit executes its NOP or RFSH pseudo instruction based on the
HALT_MAC_REF bit of the HARD_CONF SPR (0 or 1 respectively). Only when the MAC
unit executes NOPs is the state of MACRL (the low 24 bits of the 48-bit MAC unit result)
preserved; when the MAC unit executes RFSH, MACRL is destroyed. It is not critical
during halt or suspension for the MAC unit to be involved with internal register refresh.

The ALU executes either a HOST instruction or a HOSTNORFSH pseudo instruction
based on the state of the HALT_REF_DIS bit in the HARD_CONF SPR (0 or 1
respectively). Both of these instructions allow host access to internal registers during halt
or suspension. HOST provides internal register refresh when no access is pending. The
assertion of HALT_REF_DIS disables internal register refresh and always overrides
HALT_MAC_REF. (This is not desirable.)

The AGEN executes its NOP instruction which tristates the external memory buss and the
pin signal, MR/W\ . Refresh of external DRAM occurs if the XMREF_DIS bit in the
HARD_CONF SPR is low.

HOST_HALT

ESP_HALT_EN

ESP_HALT

Figure 10

halt state

QD R
5V

'74
Q
_

S

SINGLE_STEP

host reset

host set

BIOZ bit

suspension state

host load PC

Jcc
JScc
RScc

JMP-class
branch pending

HALT_JUMP bit

PC frozen

instruction cycle

 113

9.3. Single Step Mode
A program debugging tool exists which allows Single Stepping of programs. When the
SINGLE_STEP bit of the HOST_CNTL interface register is set, the ESP2 will execute the
next queued single instruction line and then enter a halt state by setting the HOST_HALT
bit of the HOST_CNTL register. The host must then clear the HOST_HALT bit in order
to have the chip execute the next queued instruction line.

Single Stepping can yield erroneous results since the normal inter-unit latencies
will disappear.

The disappearance of latency warrants consideration of the impact upon all latent
instructions:

Normal run-time instruction cycle execution latency of the JMP class (Jcc, JScc, RScc)
instructions allows the next queued instruction line to be executed prior to the actual
branch. The HALT_JUMP bit of HOST_CNTL_SPR and the HOST_CNTL interface
register comes into play here monitoring the enforcement of normal run-time execution
latency during Single Step. So, there is no difference in the behavior of JMP class
instructions during Single Step.

Recall that normal run-time execution latency of BIOZ (or BIOZNORFSH) and HALT
dictates that the following queued instruction line execute prior to suspension or halt.
During Single Step, the instruction cycle execution latency of BIOZ will disappear. This
means that the instruction line queued for execution following BIOZ will not execute
prior to suspension. In other words, if suspension occurs, the PC will stay frozen for
subsequent Steps at the location of the first instruction line queued following BIOZ. When
suspension terminates, the program proceeds from that location. This is in opposition to
the normal run-time execution latency of BIOZ where the PC becomes frozen at the
second queued line during suspension.
The same considerations apply to the HALT pseudo.

There will be a problem if the Single Step encounters a REPT instruction of the second
form having a one-line loop. See the section on Latent Instructions for more.

9.4. Single Pass Operation

An extremely useful tool for ESP2 program debugging is Single Pass execution. 'Single
Pass' refers to all those instructions that would normally execute during one sample
period. This method of debug is recommended in preference to the Single Step mode.
Single Pass can be accomplished quite easily using the IOZ status and IOZ_EN bits of the
HOST_CNTL interface register.

Assuming that the program has a BIOZ instruction for maintaining sample rate
synchronization, the chip can be made to perform a Single Pass by holding the IOZ_EN bit
low. When this bit is cleared, the ESP2 will ignore subsequent activity on the IOZ input
pin. Therefore, after the BIOZ instruction is executed, ESP2 will remain in a suspension
state indefinitely. The host can then set the IOZ status bit of the HOST_CNTL interface
register, which has the same effect as a low to high transition at the IOZ input pin, which
will cause the program to resume execution. The IOZ status bit will then be automatically

 114

cleared by the ESP2 so that the chip will again enter and remain in suspension the next
time the BIOZ instruction is reached.

The chip is taken out of suspension by a high IOZ status bit in the HOST_CNTL interface
register.

 115

10. Chip Reset, Initialization, and Synchronization

10.1. Reset
The chip has a reset pin (RES\) used for power-up initialization of the chip. Reset will
have the following effects on the chip state:

1. The HOST_CNTL interface register and HOST_CNTL_SPR are set to $04 (chip

halted).
 This action clears the IOZ status bit, the BIOZ bit, and the IOZ_EN bit.

2. HARD_CONF SPR is reset to zero to:
 1) make all serial interface clock pins (LRCLK[0:1], BCLK[0:1], and WCLK[0:1]) go
into high
 impedance input mode, set BCLK divide rates to /2,
 2) enable instruction refresh, and enable GPR/AOR refresh from the ALU only,
 3) select linear (SRAM) addressing mode, and disable magnitude truncation to

external memory,
 4) CAS\ before RAS\ external memory refresh enabled.
 5) The OFLAG pin is tristated to be compatible with pre revision 3 chips.
 6) SERIAL_RESET and SERIAL_SYNC are off (low) to be compatible with pre-

revision 3 chips.

3. External memory buss (address and data) and pin signal, MR/W\, enter tristate.

4. SER_CONF SPR, all bits set to logical 1. This places all SER[0:7] lines in the high

impedance (input) state, and selects timing-set number 1 for all.

5. Serial interface control's BCLK counters reset.

6. The HOST_GPR_PEND bit of the HOST_GPR_CNTL interface register, and the

HOST_INST_PEND bit of the HOST_INST_CNTL interface register are cleared.

7. The PC is cleared.

8. The internal clock divider (/4 in Figure 8) circuit is initialized on the low to high

transition of RES\. This allows synchronization to tester hardware for manufacturer
chip debug.

9. The REPT_CNT SPR is cleared.

 116

10.2. Initialization
 Some SPRs may require initialization, while others power-up in unknown states. All

SPR/GPR/AOR initialization can be done in the ESP2 program declarations; this is
the recommended way although the system host could also initialize the same
registers. SPRs associated with the internal memory refresh mechanism (REFPT,
REF, or REFINST) need not be initialized, except for manufacturer test purposes.

1)SER0L, SER0R, SER1L, ..., SER7R
 Clear the serial data registers being used.
2)SCLK0_REG0,1, SCLK1_REG0,1
 Settings of various serial interface clock timings. These registers require

initialization only if any of the serial clock pins will be activated.
3)SER_CONF
 Configures serial interface data lines, direction and timing set association.
4)HARD_CONF
 Configures serial interface clock pins (activation and BCLK divide rate), external

memory type and truncation, and internal/external refresh modes.

When changing serial pins from input to output at initialization (SER_CONF SPR), it
is recommended that LRCLK and BCLK first be activated with WCLK held low. This
ensures that the cleared data in the SER0L, SER0R, ..., SER7R SPRs is transferred
into the output buffers at the low to high transition of LRCLK before the contents of
the buffers is output onto the serial pins during WCLK high time. WCLK can be held
low by setting the WCLK_ST and WCLK_END values greater than the LRCLK_MOD
value (SCLK0_REG0,1 SCLK1_REG0,1 SPRs) and enabling the word clock output
pins (HARD_CONF SPR). Once a couple of sample periods have passed, WCLK can
be programmed for normal operation.

SERIAL_RESET, and SERIAL_SYNC can be used to synchronize the start of serial
timing generators.

5)REPT_CNT
 This SPR must forever be initialized to zero or bad stuff will happen (JonD).

Whenever a program is overlaid, started, restarted, etc., the REPT_CNT SPR
should be cleared. This is easily accomplished sometimes simply by declaration.
REPT_CNT controls the automatic looping mechanism for the REPT instruction, and
can become activated even if that instruction is never utilized.

6)PC
 The Program Counter should be initialized to the desired value by the programmer

in the declarations as any other SPR. The PC is in the zero state at reset (RES\).
The PC can be initialized by the system host during halt or indefinite suspension.
The PC should not be initialized at run-time by the host because the results are
indeterminate. To vector a running program at run-time, see the Applications
section.

7)GPR/AOR
 The programmer must zero all application-critical registers in the declarations.

8)HOST_CNTL host interface register.

 117

 This control register is customarily initialized from the host side. IOZ_EN is usually
set, to activate observation of the IOZ input pin by the ALU BIOZ instruction.
Typically, ESP_HALT_EN is set to allow the ESP2 to exercise the HALT pseudo
instruction. ESP_HALT and HOST_HALT are customarily cleared to start the
processor.

10.3. Synchronization.

In systems using multiple ESP2s it may be necessary to ensure that their internal clock
dividers which divide the input clock into the 4 clock instruction cycle are synchronized to
one another. This is absolutely necessary if multiple ESP2s are communicating on a
common external memory bus. For this reason, the IFLAG and OFLAG pins have dual
functionality which can be activated via the SYNC_MODE[1:0] bits of the HARD_CONF
register. The following truth table indicates the various configurations of the IFLAG and
OFLAG pins.

 Table 10. SYNC_MODE bit functionality

sync_mode[1:0] OFLAG pin function IFLAG pin function Description

0 Tristate output IFLAG input Rev 2 compatibility

mode

1 OFLG bit IFLAG input Semaphore mode

2 Sync pulse IFLAG input Sync master mode

3 Sync pulse Sync input Sync slave mode

The OFLG bit is bit 23 of the HARD_CONF SPR. Therefore, the state of the OFLAG pin
can be altered by write to the HARD_CONF SPR. As discussed in the previous section on
reset, the HARD_CONF is cleared by the RESB pin. This places the IFLAG into standard
input mode, and tristates the OFLAG for backward compatibility with earlier versions of
the chip. Once the chip has been reset, the functions of these pins can be changed in
order to synchronize multiple ESP2s. For this to be accomplished, one ESP2 will serve as
the sync master and the remainder will serve as sync slaves. The SYNC_MODE bits of
HARD_CONF register of the master are set to 2. This will cause a sync pulse to be output
on the OFLAG pin. The SYNC_MODE bits of the slaves are set to 3 which will cause them
to synchronize their internal divider to transitions on their IFLAG pin. By wiring the
OFLAG pin of the master to the IFLAG pin of the slave, and programming the registers as
mentioned, synchronization can be accomplished. The registers should be held in the
above states for a minimum of 2 to 3 instructions cycles after which, the SYNC_MODE
pins can be changed to other modes. When taking the chips out of synchronization mode,
it is suggested that all slaves be switched from mode 3 to either modes 0 or 1, before the
master is switched out of mode 2.

Since mode 3 synchronizes to transitions on the IFLAG and also outputs a sync pulse
matching the state of its internal divider, daisy chaining of ESP2s together is also
possible. The intent is to accomodate synchronization in whatever wiring configuration is
deemed to be most useful for semaphore communication using IFLAG and OFLAG under
normal operating conditions. In daisy chaining configurations where one slave will sync to
the master and then pass a corrected sync pulse to the next slave, more than 2 to 3

 118

instruction cycles may be necessary to ensure that the whole chain has locked to the
master. As a general rule, 2 to 3 cycles per link in the chain are probably sufficient.

 119

11. Special Purpose Registers

All SPRs are read-writable unless specified otherwise. All registers less than 24 bits in
width are right justified having the unused bits read as zero. Reading a 'reserved' register
returns unspecified data. Following is a map of all the SPRs:

Address SPR Name Width Register Purpose
$3ff ZERO 24 Zero Constant. Read-only.
$3fe REFINST 10 Instruction Refresh counter
$3fd REFPT 10 GPR and AOR Refresh Pointer.
$3f1 REF n/a Indirect refresh address via refresh counter

REFPT
$3fc INDIRA 10 Indirect address pointer, A source operand
$3fb INDIRB 10 Indirect address pointer, B source operand
$3fa INDIRC 10 Indirect address pointer, C destination operand
$3c7 INDIRD 10 Indirect address pointer, D source operand
$3c6 INDIRE 10 Indirect address pointer, E source operand
$3c5 INDIRF 10 Indirect address pointer, F destination operand
$3c4 INDIRG 10 Indirect offset pointer, AGEN G-operand
$3f9 INDIRECT n/a Indirect address mode
$3f8 INDIRINC n/a Indirect address mode with post-increment
$3f0 INDIRDEC n/a Indirect address mode with post-decrement
$3f7 SCLK0_REG0 24 Serial interface control registers combined to

define
set 0 left channel timing and LRCLK0 end.

 bits:
23:16
15:8
7:0

LRCLK_END0
WCLKL_END0
WCLKL_ST0

$3f6 SCLK0_REG1 24 Serial interface control registers combined to
define
set 0 right channel timing and BCLK0 modulus-1.

 bits:
23:16
15:8
7:0

LRCLK_MOD0
WCLKR_END0
WCLKR_ST0

$3f5 SCLK1_REG0 24 Serial interface control registers combined to
define
set 1 left channel timing and LRCLK1 end.

 bits:
23:16
15:8
7:0

LRCLK_END1
WCLKL_END1
WCLKL_ST1

$3f4 SCLK1_REG1 24 Serial interface control registers combined to
define
set 1 right channel timing and BCLK1 modulus-1.

 bits:
23:16
15:8
7:0

LRCLK_MOD1
WCLKR_END1
WCLKR_ST1

 120

$3f3 HARD_CONF 24 Hardware Configuration

bit:
1:0
2
3
4
6:5
7
8
9

10
11
12

13
14
15

16
17

18
19

20

21
22
23

BCLK0 divide rate
BCLK0 enable (I/O, 0/1)
WCLK0 enable (I/O, 0/1)
LRCLK0 enable (I/O, 0/1)
BCLK1 divide rate
BCLK1 enable (I/O, 0/1)
WCLK1 enable (I/O, 0/1)
LRCLK1 enable (I/O, 0/1)

MUX_ADDR (high active)
MAG_TRUNC (high active)
TRUNC_WIDTH (high = 24-bit, low=16-bit)

HALT_REF_DIS (high active)
INST_REF_DIS (high active)
HALT_MAC_REF (high active)

XMREF_DIS (high active)
XMREF_CASDIS (high active)

SERIAL_RESET (high active)
SERIAL_SYNC (high active)

reserved

SYNC_MODE[0]
SYNC_MODE[1]
OFLG bit

 121

$3f2 SER_CONF 16 Serial Data Line Configuration

bit:

0
1
2
3
4
5
6
7

8
9
10
11
12
13
14
15

 (logical 0 = timing set number zero)
data line 0 timing select
data line 1 timing select
data line 2 timing select
data line 3 timing select
data line 4 timing select
data line 5 timing select
data line 6 timing select
data line 7 timing select

data line 0 direction (0 = output)
data line 1 direction
data line 2 direction
data line 3 direction
data line 4 direction
data line 5 direction
data line 6 direction
data line 7 direction

$3ef SER0L 24 Serial data line zero left channel (SER data SPR)
$3ee SER0R 24 Serial data line zero right channel
$3ed SER1L 24 Serial data line one left channel
$3ec SER1R 24 Serial data line one right channel
$3eb SER2L 24 Serial data line two left channel
$3ea SER2R 24 Serial data line two right channel
$3e9 SER3L 24 Serial data line three left channel
$3e8 SER3R 24 Serial data line three right channel
$3e7 SER4L 24 Serial data line four left channel
$3e6 SER4R 24 Serial data line four right channel
$3e5 SER5L 24 Serial data line five left channel
$3e4 SER5R 24 Serial data line five right channel
$3e3 SER6L 24 Serial data line six left channel
$3e2 SER6R 24 Serial data line six right channel
$3e1 SER7L 24 Serial data line seven left channel
$3e0 SER7R 24 Serial data line seven right channel
$3df BASEI 24 Region I base
$3de SIZEM1I 24 Region I size less 1
$3dd ENDI 24 Region I end
$3dc BASEP 24 Region P base
$3db SIZEM1P 24 Region P size less 1
$3da ENDP 24 Region P end
$3d9 BASEQ 24 Region Q base
$3d8 SIZEM1Q 24 Region Q size less 1
$3d7 ENDQ 24 Region Q end
$3d6 BASER 24 Region R base
$3d5 SIZEM1R 24 Region R size less 1
$3d4 ENDR 24 Region R end
$3d3 BASES 24 Region S base
$3d2 SIZEM1S 24 Region S size less 1

 122

$3d1 ENDS 24 Region S end
$3d0 BASET 24 Region T base
$3cf SIZEM1T 24 Region T size less 1
$3ce ENDT 24 Region T end
$3cd BASEU 24 Region U base
$3cc SIZEM1U 24 Region U size less 1
$3cb ENDU 24 Region U end
$3ca BASEV 24 Region V base
$3c9 SIZEM1V 24 Region V size less 1
$3c8 ENDV 24 Region V end

$1ff DIL0 24 Data Input Latch SPR
$1fe DIL1 24 Data Input Latch SPR
$1fd DIL2 24 Data Input Latch SPR
$1fc DIL3 24 Data Input Latch SPR
$1fb DIL4 24 Data Input Latch SPR
$1fa DIL5 24 Data Input Latch SPR
$1f9 DIL6 24 Data Input Latch SPR
$1f8 DIL7 24 Data Input Latch SPR
$1f7 DIL8 24 Data Input Latch SPR
$1f6 DIL9 24 Data Input Latch SPR
$1f5 DILA 24 Data Input Latch SPR
$1f4 DILB 24 Data Input Latch SPR
$1f3 DILC 24 Data Input Latch SPR
$1f2 DILD 24 Data Input Latch SPR
$1f1 DILE 24 Data Input Latch SPR
$1f0 DILF 24 Data Input Latch SPR
$1ef DOL0 24 Data Output Latch SPR
$1ee DOL1 24 Data Output Latch SPR
$1ed DOL2 24 Data Output Latch SPR
$1ec DOL3 24 Data Output Latch SPR
$1eb DOL4 24 Data Output Latch SPR
$1ea DOL5 24 Data Output Latch SPR
$1e9 DOL6 24 Data Output Latch SPR
$1e8 DOL7 24 Data Output Latch SPR
$1e7 DOL8 24 Data Output Latch SPR
$1e6 DOL9 24 Data Output Latch SPR
$1e5 DOLA 24 Data Output Latch SPR
$1e4 DOLB 24 Data Output Latch SPR
$1e3 DOLC 24 Data Output Latch SPR
$1e2 DOLD 24 Data Output Latch SPR
$1e1 DOLE 24 Data Output Latch SPR
$1e0 DOLF 24 Data Output Latch SPR

 123

$1df CCR 9 Condition Code Register

bit:
0
1
2
3
4
5
6
7
8

Zero flag
Less Than flag
oVerflow flag
Carry flag
Negative flag
A operand Negative flag
B operand Negative flag
IFLG (read-only)
IOZ status bit (read-only)

$1de CMR 10 Condition Mask Register

bit:
0
1
2
3
4
5
6
7
8
9

Zero mask
Less Than mask
oVerflow mask
Carry mask
Negative mask
A operand Negative mask
B operand Negative mask
IFLG mask
IOZ mask
NOT bit

$1dd PC 10 Program Counter (writable with caveat)
$1dc PCSTACK0 10 PC stack, top
$1db PCSTACK1 10 PC stack, 1 below top
$1da PCSTACK2 10 PC stack, 2 below top
$1d9 PCSTACK3 10 PC stack, 3 below top (bottom).
$1d8 REPT_ST 10 Holds PC value for start of repeat block
$1d7 REPT_END 10 Holds PC value for end of repeat block.
$1d6 REPT_CNT 24 Repeat counter for REPT instruction.
$1d5 ALU_SHIFT 24 ALU shift amount (only the five LSBs are used to

control double precision shifts in the ALU).

 124

$1d4 MACRL 24 MAC Result Low latch (read-only)
$1d3 MACP_H 24 MACP latch high word (write-only)
$1d3 MACH 24 MAC latch high word (read-only)
$1d2 MACP_HC 24 MACP latch high word - clear low word

(write-only)
$1d1 MACP_L 24 MACP latch low word (write-only)
$1d1 MACL 24 MAC latch low word (read-only)
$1d0 MACP_LS 24 MACP latch low word - sign extend into high word

(write-only)
$1cf HOST_GPR_DATA 24 GPR/SPR/AOR data access by host
$1ce HOST_CNTL_SPR 8 Image of the HOST_CNTL host interface register

for internal access to status and control bits. All
high active.

 bit:
0
1
2

3
4
5

6
7

ESP_HALT_EN (read-only)
ESP_HALT
HOST_HALT (read-only)

IOZ status bit
IOZ_EN (read-only)
BIOZ bit (read-only)

SINGLE_STEP (read-only)
HALT_JUMP (read-only)

$1cd HALF 24 Read-only constant register containing the hex
value $400000. This value is necessary for some
MAC unit pseudo instructions.

$1cc ONE 24 Read-only constant register containing the hex
value $000001.

$1cb MINUS1 24 Read-only constant register containing the hex
value $800000.

$1ca n/a reserved address available for future use
$1c9 n/a reserved (tied in with $1c8 since

HOST_ESP_FACE is accessed over the GPR
busses which accesses two registers at a time and
column multiplexes the busses).

$1c8 HOST_ESP_FACE 24 SPR mapping of the HOST_ESP_FACE_B2,1,0
host interface registers. This register is
uncommitted.

 125

11.1 SPR Descriptions
ALU_SHIFT is an SPR which supplies a shift amount (an extra source operand) to the
ALU during the execution of the ASDH, ASDL, LSDH, and LSDL instructions. Regarding
its availability to the ALU for its prescribed purpose, loading ALU_SHIFT follows the
same inter-unit latency rules as any other GPR/AOR destination.
ALU_SHIFT is read/writable and could be used like a GPR in programs where the double
precision shift instructions are not required.

BASE, END, and SIZEM1 registers are used by the Address Generator for accessing up to
eight regions in external memory. Each of the regions has a programmable size and
location in physical memory. See the AGEN description for further information.

CCR and CMR are the Condition Code and Condition Mask Register and are concerned
with conditional execution of instructions. The CCR is set automatically only in the ALU.
These two SPRs are readable and writable with the exception of the IOZ status bit and
IFLG which are read-only in the CCR. For further information see the description of the
Conditional Execution Mechanism in the section on the Condition Code Register.

The DIL and DOL registers are the data interface to external memory. Data coming into
the chip is latched in the designated DIL register. Data to be written by the chip must be
placed in one of the DOL registers. These SPRs are readable and writable like GPRs. See
the sections on the External Memory Interface for more information on the use of these
registers.

The HALF register is a read-only constant containing the value $400000. This value is
necessary for some MAC unit pseudo instructions and has therefore been hardwired into
an SPR.

The HARD_CONF register is an 18-bit SPR used to configure multifarious aspects of the
chip hardware. Upon reset, this register will initialize to 0.
The LSBs of HARD_CONF determine whether each serial clock pin acts as input or
output, and determine the divide-down rates of BCLK0 and BCLK1 (00 corresponds to /2,
01 <=> /4, 10 <=> /8, 11 <=> /1). When the individual serial clock pins are not enabled,
they are in the high impedance input mode.
The MUX_ADDR, MAG_TRUNC, and TRUNC_WIDTH bits are readable and writable in
this register. When the MUX_ADDR bit is low, this yields the linear external addressing
mode suitable for SRAM or peripheral I/O. When MUX_ADDR is high, multiplexed
addressing suitable for DRAM is activated. Assertion of MAG_TRUNC invokes the
magnitude truncation mode of WR to external memory. TRUNC_WIDTH low selects
magnitude truncation to 16 bits, high selects to 24 bits.
The INST_REF_DIS (instruction refresh disable), HALT_REF_DIS (halt refresh disable),
and HALT_MAC_REF (halt MAC unit refresh) bits are useful for controlling the automatic
refresh of instructions and internal registers. See the section on Internal Memory
Refresh for details.
The XMREF_DIS (external memory refresh disable) and XMREF_CASDIS (external
memory refresh CAS\ disable) bits control the refresh mode of external memory. The
default mode provides CAS\ before RAS\ refresh. Setting XMREF_CASDIS provides
RAS\-only refresh. Setting XMREF_DIS disables external memory refresh altogether
regardless of the setting of XMREF_CASDIS.
Setting the SERIAL_RESET bit will keep the serial clocks in a reset state in which both
WCLK pins are low, both LRCLK pins are high, and both BCLK pins are low. This can be

 126

useful for resetting the clocks after changing registers that control the period and duty
cycle of the WCLK and LRCLK pins. Setting SERIAL_SYNC causes serial timing
generator 1 to reset on the low to high transition of LRCLK[0] as well as LRCLK[1]. This
can be useful for synchronizing the two timing generators when timing generator 1 is
running at an integer multiple of the sample rate set by timing generator 0.

 127

SYNC_MODE[1:0] and OFLG are used in conjunction with the OFLAG and IFLAG pins to
provide instuctions synchronization between multiple ESP2s. (See the section on
synchronization for a description of the function of these bits).

HOST_CNTL_SPR is an SPR image of the HOST_CNTL host interface register. All of the
bits of this register can be read by the ESP2 program to allow access to these hardware
status and control bits. For a description of this register refer to the section on Halting
the Chip; also the description of the HOST_CNTL interface register.

The ESP_HALT bit can be written. This is necessary for the proper execution of
the HALT pseudo instruction in the ALU.

 The IOZ status bit appears in the CCR and can easily be polled. Detecting and
clearing a set IOZ status bit can be accomplished automatically by executing the BIOZ
instruction. Alternately, the IOZ status bit can be written via this SPR to allow manual
program control.

The HOST_ESP_FACE register is a concatenation of three 8-bit host interface registers
which are made accessible as an SPR to ESP2 instructions. Like HOST_GPR_DATA, this
SPR is unusual in the respect that it is directly accessible from both the host interface and
the ESP2 without the need to execute HOST or BIOZ instructions. What differentiates
HOST_ESP_FACE from HOST_GPR_DATA is that it is uncommitted; meaning, the
programmer is free to utilize this resource in any opportune manner. Since one of the
purposes of the host interface is host access of GPRs/AORs/SPRs, this register could be
accessed like any other SPR using the mechanism described in the Host/ESP2 Interface
description. But this is an idiosyncrasy of the design which is not the intended use of this
register.
One possible use of HOST_ESP_FACE would be in a DMA (direct memory access) scheme
where the ESP2's external memory were being quickly loaded (or read). This SPR would be
written by some exogenous mechanism, then a tight ESP2 loop would write that data out.
The IFLAG and OFLAG pins might act as the semaphores in this scheme.

The HOST_GPR_DATA register is mapped as an SPR to provide the link from the outside
world (the system host) to all the internal ESP2 registers (GPR/SPR/AOR). This register
is the 24-bit SPR mapping of the concatenated 8-bit HOST_GPR_DATA_B2,1,0 host
interface registers. The ESP2 automatically moves pending host data to and from this
SPR during ALU HOST instruction execution.

The INDIRA,B,C,D,E,F,G SPRs hold indirect addresses. Writing these SPRs allows
modification of the indirect address. See the section on Indirect Register Addressing.

The INDIRDEC address is used in the same manner as INDIRECT, but it causes a
post-decrement of the corresponding (INDIR) pointer register. The decremented value is
ready for the next instruction cycle. If INDIRDEC is used in a skipped instruction, the
address will not be decremented.

The INDIRECT address is used to initiate indirect addressing. When this address is used
as the A operand address, for example, the contents of the INDIRA pointer register is
substituted for the address of that operand. The same happens for the remaining
operands substituting the INDIRB, INDIRC, INDIRD, INDIRE, INDIRF and INDIRG
SPRs, respectively.

 128

The INDIRINC address is used in the same manner as INDIRECT, but it causes a
post-increment of the corresponding (INDIR) pointer register. The incremented value is
ready for the next instruction cycle. If INDIRINC is used in a skipped instruction, the
address will not be incremented.

MACH and MACL are the most significant and least significant halves of the MAC unit's
unsaturated MAC read-only latch.

MACP_H and MACP_L are the most significant and least significant halves of the MAC
unit's write-only Preload latch. Since these two registers are write-only and the MACH
and MACL registers are read-only, they have been mapped to the same addresses.

MACP_HC is a secondary method of writing the high word of the MAC Preload latch
(MACP) which simultaneously clears the MACP_L register.

MACP_LS is a secondary method of writing the low word of the MAC Preload latch
(MACP) which simultaneously sign-extends the MSB of the data entering the MACP_L
register into the 24-bit MACP_H register.

MACRL is the low 24 bits of the MAC unit result after shifting and saturation.

The MINUS1 register is a read-only constant containing the value $800000. This value is
required by some MAC unit pseudo instructions.

The ONE register is a read-only constant containing the value $000001. This value is
required by the MAC unit NOP pseudo instruction and has, therefore, been hardwired
into an SPR.

PC is the Program Counter. This SPR is readable and writable. At run-time there are
severe hazards associated with writing to the PC from the host or as destination of the
MAC unit or ALU. But the PC can be written by the host with no caveat while the chip is
halted or indefinitely suspended, to initialize the start point of a program. The PC is
cleared on chip reset.

PCSTACK0,1,2,3 compose a four deep stack for keeping track of the PC during
subroutine calls. JScc pushes the PC value + 2 onto the top of the stack (PCSTACK0), and
RScc pops the new PC value from the top of the stack.

REF is a reserved address used during internal register refresh. Specifying this address
as a source or destination operand address causes indirect use of the REFPT contents as
the operand address. When REF is used as the source and destination operand so as to
accomplish refresh, the same contents of REFPT is used for both source and destination.
Specifying REF as the source operand of an instruction, REFPT is incremented in
preparation for use as a source operand for another refresh operation. The newly
incremented value is not available as the destination address until the time at which the
current destination address is decoded for the function unit that caused the increment.
See section on GPR and AOR Refresh for additional information on the use of these
addresses.

REFINST is the 10-bit refresh counter for refreshing instructions. See the section on
Internal Memory Refresh for more information.

 129

REFPT is the 10-bit refresh counter for refreshing internal registers, GPR/AOR. See the
section on GPR and AOR Refresh for more information.

 130

REPT_ST, REPT_END, and REPT_CNT are used as extra sources by the REPT
instruction. When REPT is executed, REPT_ST always gets loaded with the value of the
PC for the next instruction line queued for execution. REPT_END always gets loaded with
the value from the A operand field of the instruction. REPT_CNT gets loaded with the
value from the B operand field or the B operand depending upon the form of the
instruction.

SCLK0_REG0, SCLK0_REG1, SCLK1_REG0, and SCLK1_REG1 are concatenated
registers each containing three 8-bit serial interface control registers used for setting
serial clock timings. The SPR map lists the control registers contained within each SPR,
while the Serial Interface section describes how those control registers are used.

SER0L, SER0R, SER1L, ... Repositories for serial data transmission to and from other
ESP2 chips, A/D and D/A converters, and other serial devices. There are 8 serial stereo
data lines (physical pins) having a left and right channel-data SPR associated with each.
See the section on the Serial Interface.

The serial data line configuration register, SER_CONF, is a 16-bit register whose upper
byte has one bit for each serial data line, which designates that data line as input or
output. A logical 1 in the associated bit indicates that the data line is an input. In the
lower byte there is a bit per data line which associates one of two timing sets with that
data line: 0 = timing set number 0, 1 = timing set 1. See the SPR map in this section on
Special Purpose Registers for the exact definition of bits.

ZERO is the constant value $000000 hardwired into the chip. Since this value is required
by many of the pseudo instructions, it has been included as an SPR. It is also used as the
null destination in cases where the result of an instruction is either undefined or not of
interest.

 131

12. Host/ESP2 Interface

The purpose of the host interface is to access all the ESP2 internal registers and
instruction memory. There are separate mechanisms for accessing each which are
described herewith.

The host interface consists of five address pins HA[4:0], eight data pins HD[7:0], a
read/write pin HR/W\, and a chip select pin CS\. HA[4:0] and HR/W\ are latched on the
falling edge of CS\. In a read cycle, the ESP2 will assert the HD[7:0] pins with the read-
data while CS\ is low. In a write cycle, the HD[7:0] pins will propagate into the addressed
register and be latched on the rise of CS\.

CS

Tas Tah Tds Tdh

HA[4:0]

HD[7:0]

Tws Twh

HR/W

Write Cycle Timing

CS
Tas

Tah

Thz

HA[4:0]

HD[7:0]
Tws Twh

HR/W

Read Cycle Timing

Tacc
Toe

 Figure 11.
Tas = Address Setup to CS\ falling edge
Tah = Address Hold from CS\ falling edge
Tws = HR/W\ Setup to CS\ falling edge
Twh = HR/W\ Hold from CS\ falling edge
Tds = Data Setup to CS\ rising edge (write cycle)
Tdh = Data Hold from CS\ rising edge (write cycle)
Toe = CS\ falling edge to Data Active delay (read cycle, output enable)

 132

Tacc = CS\ falling edge to Data Valid (read cycle, access time)
Thz = CS\ rising edge to Data Tristate (read cycle)

 133

12.1. Host/ESP2-Register Interface
The HOST_GPR_PEND bit of the HOST_GPR_CNTL host interface register is at once the
semaphore and the command to read or write an internal register (GPR/AOR/SPR). When
there is no internal register access pending, internal register refresh typically occurs.

When the chip is not halted and if an access is pending, data will be automatically moved
from/to HOST_GPR_DATA (the SPR image of the HOST_GPR_DATA_B2,1,0 interface
registers) to/from an internal register during the first available HOST or BIOZ
instruction. In this manner the ALU grants host access along normal ALU data paths.
The direction of transfer is specified by the HOST_GPR_RW\ bit of the
HOST_GPR_CNTL interface register. Depending on the location and frequency of HOST
or BIOZ instructions in the executing program, there is typically some delay before the
write to or read of the GPR/AOR/SPR actually takes place. The worst case delay under
typical operating conditions is one sample period. When the access has been completed,
the HOST_GPR_PEND bit will be cleared. The host will not be forced to hang waiting for
the semaphore because the host can poll it.

When the chip is halted or indefinitely suspended and an access is pending, the ALU is
continuously executing HOST instructions by design. Therefore there is minimum delay
for the transfer from/to the HOST_GPR_DATA SPR. Since the system host presumably
runs asynchronous to the internal instruction cycle, the HOST_GPR_PEND bit must still
be polled.

12.1.1. Writing GPR/AOR/SPR
A write of a GPR/AOR/SPR via the host interface involves the following steps:

1. Check the HOST_GPR_PEND bit of the HOST_GPR_CNTL interface register to see

that it is low meaning that there is no register transfer pending.

2. Write three bytes of data to the HOST_GPR_DATA_B2,1,0 interface registers. (If

these registers already hold the desired data because of a previous GPR/AOR/SPR-
write, this step can be ignored).

3. Write the GPR/AOR/SPR address to the HOST_GPR_ADDR1,0 interface registers.

4. Write $80 into the HOST_GPR_CNTL interface register initiating the write. The

HOST_GPR_PEND bit when set constitutes the command to write when the
HOST_GPR_RW\ bit is low. By observing this bit, the write event can be monitored
because the bit goes low when the write occurs.

12.1.2. Reading GPR/AOR/SPR

A read of a GPR/AOR/SPR via the host interface involves the following steps:

1. Check the HOST_GPR_PEND bit of the HOST_GPR_CNTL interface register to see

that it is low meaning that there is no register transfer pending.

2. Write the GPR/AOR/SPR address to the HOST_GPR_ADDR1,0 interface registers.

 134

3. Write $81 to the HOST_GPR_CNTL interface register, setting the
HOST_GPR_PEND bit. The HOST_GPR_PEND bit when set constitutes the
command to read when the HOST_GPR_RW\ bit is high.

4. Once the HOST_GPR_PEND bit of the HOST_GPR_CNTL interface register has

been automatically cleared, read three bytes of data from the
HOST_GPR_DATA_B2,1,0 interface registers.

 135

12.2. Host/ESP2-Instruction Interface
The HOST_INST_PEND bit of the HOST_INST_CNTL host interface register is at once
the semaphore and the command to read or write one 96-bit instruction. When there is no
instruction access pending, instruction refresh typically occurs.

Host access to instruction memory is always allowed on every instruction cycle whether or
not the chip is halted; there are no hazards. When an access is pending, one instruction
will be automatically moved from/to the HOST_INST_DATA_B11,...,0 interface registers
along a separate 96-bit wide data path in a direction specified by the HOST_INST_RW\
bit of the HOST_INST_CNTL interface register. When the access has been completed,
the HOST_INST_PEND bit will be automatically cleared. The host will not be forced to
hang waiting for the semaphore because the host can poll it. Since the system host
presumably runs asynchronous to the internal instruction cycle, it is always necessary to
poll the HOST_INST_PEND bit.

12.2.1. Writing Instruction Memory

A write of a single instruction via the host interface involves the following steps:

1. Check the HOST_INST_PEND bit of the HOST_INSTR_CNTL interface register to

see that it is low meaning that there is no instruction memory transfer pending.

2. Write twelve bytes of data to the HOST_INST_DATA_B11,...,0 interface registers. (If

these registers already hold the desired data because of a previous instruction-write,
this step can be ignored).

3. Write the instruction address to the HOST_INST_ADDR1,0 interface registers.

4. Write $80 to the HOST_INST_CNTL interface register initiating the write. The

HOST_INST_PEND bit when set constitutes the command to write when the
HOST_INST_RW\ bit is low. By observing this bit, the write event can be monitored
because the bit goes low when the write occurs.

12.2.2. Reading Instruction Memory

A read of a single instruction via the host interface involves the following steps:

1. Check the HOST_INST_PEND bit of the HOST_INST_CNTL interface register to see

that it is low meaning that there is no instruction memory transfer pending.

2. Write the instruction address to the HOST_INST_ADDR1,0 interface registers.

3. Write $81 to the HOST_INST_CNTL interface register, setting the

HOST_INST_PEND bit. The HOST_INST_PEND bit when set constitutes the
command to read when the HOST_INST_RW\ bit is high.

4. Once the HOST_INST_PEND bit of the HOST_INST_CNTL interface register has

been automatically cleared, read twelve bytes of data from the
HOST_INST_DATA_B11,...,0 interface registers.

 136

12.3. Host Interface Registers
'Reserved' registers are nonexistent; reading from them returns unspecified data.

12.3.1. Testing
For test purposes, one may be interested in writing then verifying host interface registers
to determine whether the ESP2 is alive and powered. The host interface registers are
designed to be accessed asynchronously from the system host. This design demands a
special procedure for testing some of the host interface registers. The
HOST_ESP_FACE_B2,1,0 registers can be tested in a straight-forward manner.

When testing HOST_INST_CNTL and HOST_GPR_CNTL, keep in mind that the
associated _PEND bit is self-clearing. In halt state, the HOST_GPR_PEND bit clears
itself quickly.

When testing
 HOST_INST_DATA_B11,...,0
 HOST_INST_ADDR1,0
 HOST_GPR_DATA_B2,1,0
 HOST_GPR_ADDR1,0
one must employ the following procedure:
-Write the desired _INST_ or _GPR_ host interface registers from the list above.
-Set the _PEND bit in the HOST_INST_CNTL or the HOST_GPR_CNTL register,
respectively.
-Wait for the associated _PEND bit to clear, then verify data previously written to the
selected host interface registers.

Thorough testing of GPRs/AORs, some SPRs, and the instruction (program) memory,
themselves, involves the erasure of some hidden internal registers. The correct
procedure follows the section Host/ESP2 Interface, with the following augmentation:
After the test data is written to some GPR/AOR/SPR or instruction memory, the test data
being held in the interface registers must be wiped using different data, and then a write
to the read-only SPR called ZERO must occur (it is not sufficient to simply wipe out the
host interface register data). Then, the test data can be read back from the memory-
under-test and verified.

 137

The HOST_CNTL register is tricky to test.

/*********************************** test HOST_CNTL register ***********************************/
error1 = error2 = error = 0;
/*test the halt bit by itself*/
for(i=0; i<LOOPS; i++) {
 host_inyaface->host_cntl = 0;
 temp = host_inyaface->host_inst_data_b4; /* electrical flack */
 if((host_inyaface->host_cntl & HOST_HALT) != 0) error = 1;

 host_inyaface->host_cntl = HOST_HALT;
 temp = host_inyaface->host_inst_data_b5; /* electrical flack */
 if((host_inyaface->host_cntl & HOST_HALT) != HOST_HALT) error = 1;
}
mask = 0x7f; /*mask off HALT_JUMP bit*/
logic = 0xd7;
temp1 = (0x55 | HOST_HALT) & mask;
temp2 = (0xaa | HOST_HALT) & mask; /*test performed in halt mode*/
for(i=0; i<LOOPS; i++) {
 host_inyaface->host_cntl = temp1;
 temp = host_inyaface->host_inst_data_b2; /* electrical flack */
 while((temp = host_inyaface->host_cntl & mask) != temp1) {
 if(error1) break;
 error1 = 1;
 printf("\nerror: host_cntl = %02x\n", temp);
 printf("expected %02x above\n", temp1);
 printf("For this test to work in Rev 1 or higher, the IOZ pin must be jumpered either to MPU_IOZ or GND\n");
 }
 host_inyaface->host_cntl = temp2;
 temp = host_inyaface->host_inst_data_b3; /* electrical flack */
 while((temp = host_inyaface->host_cntl & mask) != (temp2 & logic)) {
 if(error2) break; /*when both IOZ and BIOZ bits are high, they reset themselves. */
 error2 = 1;
 printf("\nerror: host_cntl = %02x\n", temp);
 printf("expected %02x above\n", temp2 & logic);
 }
}
if(!error1 && !error2 && !error)printf("HOST_CNTL host interface register is good.\n");
else if(error)printf("\nERROR! HOST_CNTL host interface register has faulty HOST_HALT bit.\n");
else if(error1 || error2)printf("\nERROR! HOST_CNTL host interface register is faulty.\n");
/**/

 138

Address Host Interface Register

Name
Register Usage

$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$a
$b

HOST_INST_DATA_B11
HOST_INST_DATA_B10
HOST_INST_DATA_B9
HOST_INST_DATA_B8
HOST_INST_DATA_B7
HOST_INST_DATA_B6
HOST_INST_DATA_B5
HOST_INST_DATA_B4
HOST_INST_DATA_B3
HOST_INST_DATA_B2
HOST_INST_DATA_B1
HOST_INST_DATA_B0

Byte 11 of instruction
Byte 10 of instruction
Byte 9 of instruction
Byte 8 of instruction
Byte 7 of instruction
Byte 6 of instruction
Byte 5 of instruction
Byte 4 of instruction
Byte 3 of instruction
Byte 2 of instruction
Byte 1 of instruction
Byte 0 of instruction

$c HOST_INST_ADDR1 2 MSBs of instruction address
$d HOST_INST_ADDR0 8 LSBs of instruction address
$e reserved
$f HOST_INST_CNTL bit 7 - HOST_INST_PEND

bit 6:1 - Reserved for use as chip revision number.
 Reads 2 in Revision 2 of the chip.
bit 0 - HOST_INST_RW\

$10 reserved
$11
$12
$13

HOST_GPR_DATA_B2
HOST_GPR_DATA_B1
HOST_GPR_DATA_B0

High byte of GPR/AOR/SPR register data
Mid byte of GPR/AOR/SPR register data
Low byte of GPR/AOR/SPR register data

$14 HOST_GPR_ADDR1 2 MSBs of GPR/AOR/SPR register address
$15 HOST_GPR_ADDR0 8 LSBs of GPR/AOR/SPR register address
$16 reserved
$17 HOST_GPR_CNTL bit 7 - HOST_GPR_PEND

bit 0 - HOST_GPR_RW\

$18 reserved
$19 HOST_CNTL Host Control register. All bits are active in the high state,

readable and writable, except for the HALT_JUMP bit
which is read-only.

 bit:
0
1
2

3
4
5

6
7

ESP_HALT_EN
ESP_HALT
HOST_HALT

IOZ status bit
IOZ_EN
BIOZ bit

SINGLE_STEP
HALT_JUMP (read-only)

$1a reserved
$1b HOST_ESP_FACE_B2 High Byte of HOST_ESP_FACE SPR

 139

$1c HOST_ESP_FACE_B1 Mid Byte of HOST_ESP_FACE SPR
$1d HOST_ESP_FACE_B0 Low Byte of HOST_ESP_FACE SPR

140

12.3.2. Some Host Interface Register Descriptions
The host control register, HOST_CNTL, is the only register for controlling the operation
of the ESP2 that is directly accessible from the host processor. This read/write host
interface register allows the host to recall the hardware status, and provides direct
control of the ESP2 regardless of the state of its internal function units. This register is
also directly accessible by ESP2 as an SPR in a limited way (refer to the
HOST_CNTL_SPR description).
 The ESP_HALT and ESP_HALT_EN bits in conjunction with the HALT pseudo
instruction provide a means of break-pointing during algorithm execution (refer to the
section on Halting the Chip).
 The HOST_HALT bit provides a means of unconditionally halting the ESP2 by the
host processor regardless of the state of the internal function units.
 The BIOZ bit, the IOZ status bit, and the IOZ_EN bit operate in conjunction with
the ALU BIOZ instruction and are described in detail in the description of that
instruction.
 The SINGLE_STEP bit provides a mechanism for the successive execution of
single queued instruction lines.
 HALT_JUMP is a read-only monitor-bit. It goes high when the chip enters the halt
or suspension state (HALT (ESP_HALT), HOST_HALT, or BIOZ) if the ALU instruction
queued for execution is from the JMP class (Jcc, JScc, RScc). When this monitor bit goes
high, normal run-time instruction cycle execution latencies are being enforced coming out
of halt/suspension. The bit automatically clears when the program resumes.

 These bits are discussed further in the section on Halt and Suspension States.

HOST_ESP_FACE_B2,1,0 are uncommitted host interface registers (mapped into three
consecutive bytes from the host side) which are also directly accessible by ESP2 as one
(24-bit) SPR called HOST_ESP_FACE.
The HOST_GPR_DATA_B2,1,0, HOST_ESP_FACE_B2,1,0, and HOST_CNTL host
interface registers are distinguished in so far as they are simultaneously mapped as SPRs,
so can therefore be accessed directly by ESP2. This means that there is no need for the
execution of BIOZ or HOST instructions in order that the host be able to communicate
with a running ESP2 program via these registers; and vice versa. This is advantageous for
fast intercommunication. In the host register space, these registers are mapped as
consecutive bytes, whereas in the SPR space they are concatenated into single 24-bit
registers.

See the SPR Descriptions for a bit more about HOST_GPR_DATA_B2,1,0, the internal
register link to the outside world.

 141

13. Pin List

Pin Name Description Function Number

External Memory Interface
MADDR[23:0]
MDATA[23:0]
MR/W\
RAS\
CAS\
MEM_REQ\
VSS_A
VSS_D
VDD_A
VDD_D

Address Buss
Data Buss
Write Enable
Row Address Strobe
Column Address Strobe
Memory Cycle Request
Ground to address
buffers
Ground to data buffers
Supply to address buffers
Supply to data buffers

Output/Tristate
I/O
Output/Tristate
Output
Output
I/O Tristate
Ground
Ground
Power
Power
Subtotal

24
24
1
1
1
1
1
1
1
1
56

Host Interface
HA[4:0]
HD[7:0]
CS\

Host Address
Host Data
Chip Select
(edge sensitive)

Input
I/O
Input

5
8
1

HR/W\
VSS_H
VDD_H

Write Enable
Ground to buffers
Supply to buffers

Input
Ground
Power
Subtotal

1
1
1
17

Serial Interface
BCLK[1:0] Bit Clocks

(edge sensitive)
I/O 2

WCLK[1:0] Word Clocks
(edge sensitive)

I/O 2

LRCLK[1:0]
SER[7:0]
VSS_S
VDD_S

Left/Right Clocks
Serial Data Lines
Ground to buffers
Supply to buffers

I/O
I/O
Ground
Power
Subtotal

2
8
1
1
16

Miscellaneous
CLK

IOZ

System Clock
(four times instruction
rate,
40 MHz nominal)
Sample Rate
Synchronization (rising
edge sensitive, refer to
BIOZ instruction)

Input

Input

1

1

IFLAG
OFLAG
RES\
VSS[3:0]
VDD[1:0]

Input Flag
Output Flag
Chip Reset
Ground to chip internals
Supply to chip internals

Input
Output/Tristate
Input
Ground
Power
Subtotal

1
1
1
4
2
11

 142

 Grand total 100

 143

 Table 11. ESP2 Chip Pinout

PIN
NUMBER

NAME FUNCTION comment

 1 resb Input
 2 clk Input
 3 iflag Input
 4 VSS[0] Ground Connect to VSS

frame
 5 oflag Output/Trist

ate

 6 VDD_S Power
 7 bclk0 I/O
 8 wclk0 I/O
 9 lrclk0 I/O
10 bclk1 I/O
11 wclk1 I/O
12 lrclk1 I/O
13 ser7 I/O
14 ser6 I/O
15 ser5 I/O
16 ser4 I/O
17 ser3 I/O
18 ser2 I/O
19 ser1 I/O
20 ser0 I/O
21 VSS_S Ground
22 VSS[1] Ground Connect to VSS

frame
23 VDD[0] Power
24 VDD_A Power
25 mrwb Output/Trist

ate

26 maddr[23] Output/Trist
ate

27 maddr[22] Output/Trist
ate

28 maddr[21] Output/Trist
ate

29 maddr[20] Output/Trist
ate

30 maddr[19] Output/Trist
ate

31 maddr[18] Output/Trist
ate

32 maddr[17] Output/Trist
ate

33 maddr[16] Output/Trist
ate

34 maddr[15] Output/Trist
ate

 144

35 maddr[14] Output/Trist
ate

36 maddr[13] Output/Trist
ate

37 maddr[12] Output/Trist
ate

38 maddr[11] Output/Trist
ate

39 maddr[10] Output/Trist
ate

40 maddr[9] Output/Trist
ate

41 maddr[8] Output/Trist
ate

42 maddr[7] Output/Trist
ate

43 maddr[6] Output/Trist
ate

44 maddr[5] Output/Trist
ate

45 maddr[4] Output/Trist
ate

46 maddr[3] Output/Trist
ate

47 maddr[2] Output/Trist
ate

48 maddr[1] Output/Trist
ate

49 maddr[0] Output/Trist
ate

50 VSS_A Ground

 145

PIN
NUMBER

NAME FUNCTION comment

51 VSS_D Ground
52 mdata[23] I/O
53 mdata[22] I/O
54 mdata[21] I/O
55 mdata[20] I/O
56 mdata[19] I/O
57 mdata[18] I/O
58 mdata[17] I/O
59 mdata[16] I/O
60 mdata[15] I/O
61 mdata[14] I/O
62 mdata[13] I/O
63 mdata[12] I/O
64 mdata[11] I/O
65 mdata[10] I/O
66 mdata[9] I/O
67 mdata[8] I/O
68 mdata[7] I/O
69 mdata[6] I/O
70 mdata[5] I/O
71 mdata[4] I/O
72 mdata[3] I/O
73 mdata[2] I/O
74 mdata[1] I/O
75 mdata[0] I/O
76 VDD_D Power
77 rasb Output
78 casb Output
79 mem_req

b
I/O

80 ioz Input
81 csb Input
82 hrwb Input
83 VSS[3] Ground Connect to VSS

frame
84 VSS[2] Ground Connect to VSS

frame
85 VDD[1] Power
86 VDD_H Power
87 ha[4] Input
88 ha[3] Input
89 ha[2] Input
90 ha[1] Input
91 ha[0] Input
92 hd[7] I/O
93 hd[6] I/O
94 hd[5] I/O
95 hd[4] I/O

 146

96 hd[3] I/O
97 hd[2] I/O
98 hd[1] I/O
99 hd[0] I/O
100 VSS_H Ground

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51

26

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27
100

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

JonD
DaveA
DaveD

1994 USA

VSS_A

maddr[0]

maddr[1]

maddr[2]

maddr[3]

maddr[4]

maddr[5]

maddr[6]

maddr[7]

maddr[8]

maddr[9]

maddr[10]

maddr[11]

maddr[12]

maddr[13]

maddr[14]

maddr[15]

maddr[19]

maddr[17]

maddr[18]

maddr[20]

maddr[21]

maddr[16]

maddr[22]

maddr[23]

VDD_D

casb

mem_reqb

csb

ioz

hrwb

VSS[3]

VSS[2]

rasb

ha[2]

ha[1]

ha[0]

hd[7]

ha[3]

ha[4]

VDD_H

VDD[2]

hd[6]

hd[5]

hd[4]

hd[3]

hd[2]

hd[1]

hd[0]

VSS_H

ESP2

re
s
b

c
l
k

i
f
l
a
g

V
S
S

[0]

V
D
D
_S

b
c
l
k
0

w
c
l
k
0

l
r
c
l
k
0

b
c
l
k
1

w
c
l
k
1

l
r
c
l
k
1

s
e
r
7 6 5 4 3 2 1 0

s
e
r

V
S
S
_S

V
S
S
[1]

V
D
D
[1]

V
D
D
_A

m
r
w
b

V
S
S
_D

m
da
ta

[23]

[22]
[21]

[20]
[19][17][15][13][11][9][7][5][3][1]

m
da
ta

[0]

[18][16][14][12][10][8][6][4][2]

ES5511

Figure 12.

o
f
l
a
g

 147

 148

 Figure 13. ESP2 die photograph, revision 1.

 149

 ESP2

 Ensoniq Signal Processor 2

 Part II

 Language and Software Specification1

Jon Dattorro
J. William Mauchly

1  1995, Jon Dattorro

1

0. Introduction

In Part II we describe the syntax and assembler interpretation of the language used for
writing programs for the ESP2 digital audio signal processing computer chip. The chip
architecture and instruction set are described in Part I (often referred to as the
Chip�Spec.). Some instruction features are highlighted, elaborated, or augmented here in
Part�II, however.

1. Architectural Overview

The ESP2 chip utilizes a very long instruction word. It shares some of the properties of a
Reduced Instruction Set Computer (RISC) where all hazards are accountable in the
assembler. Every ESP2 instruction takes the same amount of time (four system clocks)
and the same amount of space (96 bits).

In the ESP2 there are three distinct function units: called MAC, ALU, and AGEN.
A short (2-deep) Pipeline design strategy is incorporated for each function unit to speed
up instruction execution. There is one Program Counter (PC). All three function units
operate in parallel on a common pool of registers, and the instruction set fully supports
the parallelism. Only one of the function units, the Address Generator (AGEN), can
access data memory which is external to the chip.

1.1. Program Instruction Memory
The instruction word is 96 bits wide. All instructions are stored inside the chip in DRAM
for ultimate speed of execution. In the first chip revision are planned 300 instructions,
with provisions for 1024. Each ESP2 instruction is, because of parallelism, equivalent to
3 instructions on other popular DSP chips.

The design constraint which makes all instructions execute in the same amount of time
was imposed because of its importance to the programmer. The programmer’s job often
consists of cramming the most functionality into a period of time dictated by the audio
sample rate. Instructions which would have had conditional execution times are excluded
from the ESP2 design as are instructions whose execution time would have deviated from
the norm. The enforced regularity eases the programmer’s job of budgeting execution
time.

2

1.2. Internal Registers
The chip contains three types of registers: General Purpose Registers (GPR), Address
Offset Registers (AOR), and Special Purpose Registers (SPR). The GPRs, AORs, and
SPRs can be utilized as sources and destinations by the MAC unit and the ALU. All
registers have a unique address in the range of [0...1023]; i.e., there are 1024 on-chip
registers. Except for a few SPRs, all registers are 24 bits wide. SPRs which are not
24 bits in width have unused bits read as logical 0.

The AORs are usually associated with the AGEN and are utilized as sources there, but
when not being used by the AGEN they are free to double as general purpose registers.
So, the AORs can be used like GPRs in the MAC unit and ALU; the syntax supports this.

The SPRs have a wide variety of purposes. Many of them are tied directly into the
operations of the three function units. As such, they often act as extra source or
destination registers. For example, one of the 16 SPRs called DIL is always the
destination of the AGEN for an external memory read. Another example is the
ALU_SHIFT SPR which acts as an extra source register, holding the shift amount and
direction for the ALU’s double precision shift instructions (ASDH, ASDL, LSDH,
LSDL).

The SPRs are implemented using Static RAM, so we may associate the words: special,
source/destination, and static with the S in SPR as a mnemonic aid to understanding.

1.3. Function Units
The function units operate directly on the registers. The three function units are the
Multiplier/Accumulator/shifter (MAC unit), the Arithmetic Logic unit (ALU), and the
Address Generator (AGEN). All three units fetch their individual instruction information
(opcode) from different parts of the same long instruction word. The instruction word
also provides the source and destination register addresses for the operations.

The MAC unit and ALU routinely utilize three operands; two sources, one destination.2

AGEN code can be automatically generated for the programmer by the assembler if
desired. The AGEN routinely utilizes one source operand (an AOR) plus three or four
extra source operands.3 The AGEN utilizes one destination operand4 and/or one or
no extra destination operand.5

2Many SPRs are dedicated to particular function units bringing the maximum utilization up to
five operands in at least one case.
3; i.e., the three SPRs known as the region control registers, and one of the 16 Data Output
Latch SPRs in the case of an external memory write.
4; i.e., the region BASEr SPR in the case of an UPDATE BASE operation,
5; i.e., one of the 16 SPRs known as Data Input Latch in the case of an external memory read.

3

1.3.1. MAC unit
The MAC unit takes two registers as sources and writes another register as destination.
It also has two internal latches, called MAC and MACP (P��for�Preload), which can be
involved in the computation as seed sources and are also accessible via SPRs. The
MAC latch can also act as an extra destination holding intermediate accumulated
products, but this destination can be selectively inhibited under program control.
Internal to the MAC unit is also a versatile Barrel Shifter which can be used to shift
(both ways) an accumulated result out to some destination, or to shift the contents of the
seed sources prior to the next accumulation. The MAC unit has 20 distinct
fundamental (primitive) instructions and 10 variants, plus about 17 pseudo
instructions.

1.3.2. ALU
The ALU usually takes two registers as sources and writes another register as
destination. One of the sources, of course, may also be specified as the destination if
desired; the same is true of the MAC unit. The ALU controls all branching and
subroutine calls. The ALU has the widest assortment of fundamental instructions
numbering 32, plus about 23 pseudo instructions.

1.3.3. AGEN
The AGEN routinely takes five registers as sources for an external memory write, or
four source registers and one destination register for an external memory read. The
AGEN unit is the most unusual function unit; it both calculates addresses and uses
those addresses to read or write external memory. AGEN has several flexible modes of
address calculation. The AGEN is a modulo address calculation unit by design. It
employs a multiplicity of address offsets into one or several user-specified circular
regions of physical (absolute) address space. This is its fundamental mode of
calculation but it can easily be coerced into accessing fixed external table arrays or into
absolute addressing of peripheral I/O devices. The AGEN has 8 distinct instructions.

4

1.4. External Memory
24 address and 24 data lines on-chip provide access for up to 16 Mega-words of 24-bit
data memory off-chip. All external memory accesses are controlled by the AGEN. One
physical read or write can occur per instruction cycle (one program line, one instruction
line, one line of code, or four system clocks; all the same meaning).

1.4.1. AGEN Access of External Memory
The address calculator within AGEN takes as source operand, one Address Offset
Register (AOR) having an associated region specifier. The physical address
automatically calculated is a function of the selected addressing mode, the specified
AOR, and the contents of the region control registers (the extra source SPRs: BASEr,
SIZEM1r, ENDr) for the specified region. The AGEN then uses that address to read or
write external memory.

A word of data read from external memory is transferred to one of a set of 16 SPRs called
Data Input Latches (DIL). Likewise, a word of data written to external memory comes
from one of a set of 16 SPRs called Data Output Latches (DOL). The AGEN’s DILs and
DOLs are then accessible by the MAC unit and ALU as operands.

1.4.2. Regions
A region is a programmer-specified absolute range of external memory. Having a total
of eight hardware-supported regions, each region can be used for any desired purpose.
For example, one region could hold a multiplicity of delaylines,6 while another holds
one or more tables, while yet another is used for peripheral I/O. Regions can reside
anywhere in physical memory and be of any size, so long as they do not span the physical
limits. Every external memory access is associated with one of the eight provided
regions: I,P,Q,R,S,T,U,V. Regions are defined by their associated region control
registers: BASEr, SIZEM1r, and ENDr.

1.4.3. Offset Addressing
An external memory address is automatically calculated using offset addressing into a
region, followed by modulo arithmetic to keep the address within the region boundaries.
An absolute address is automatically calculated by AGEN on every instruction cycle; the
calculation is begun by adding an Address Offset Register (AOR) to a region BASEr
register. An absolute address which is beyond the region ENDr is wrapped around the
modulus by automatically subtracting the actual region size from it, so as to remain inside
the region. The specific AOR and region used for each AGEN operation are encoded in
the instruction and implicitly or explicitly determined by the programmer.

The address offset held within an AOR is regarded as 24-bit unsigned by the AGEN unit.
But since AORs can also be used for general computations outside the realm of address
generation, the 24-bit contents of AORs are treated as standard two’s complement by the
ALU and MAC unit.

6A delayline implements the DSP function, z-N, and is often a constituent of a circular buffer.
(See Preface.)

5

1.4.4. AGEN Utilization
Artificial reverberation requires perhaps 100 separate delaylines. In some other more
traditional processor architecture, at every sample period the read and write address of
every delayline would be decremented and individually subject to modulo arithmetic.

Using the ESP2, the individual delayline address offsets each reside in a separate Address
Offset Register. A region is set up which contains all the delaylines in their entirety, and
whose size is at least the total size of all the delaylines.7 The assembler determines that
total and initializes the region control registers:

SIZEM1r is set by the assembler to the total region size, less 1.

The ENDr SPR points to the last absolute memory location in the region.

BASEr initially points to the start of the region in absolute memory, as determined at
assembly.

The BASEr register is decremented once per sample under program control. Each
delayline address offset, held in an individual AOR, is with respect to the region BASEr.
A single decrement of the region BASEr, then, will decrement the absolute address of
every delayline. The modulo arithmetic required to keep BASEr within the modulus (the
region, or the circular buffer) happens automatically in the hardware.

In other words, all modulo arithmetic is performed with respect to the region as modulus,
not to the individual delayline. All the delaylines reside within the chosen region. As the
region BASEr is decremented, all the delaylines effectively move at once around the
circular region following that region BASE. This is further discussed in the section,
UPDATE region BASE.

7The assembler first augments the declared size of each individual delayline (or table) by 1.

6

2. Assembly Language

This section presents the skeletal parts of the ESP2 syntax, and introduces concepts of
truncation mathematics which are indigenous to fixed-point machines. The exposition of
the greater part of the AGEN unit syntax is postponed until the section devoted to the
AGEN unit itself; likewise for the MAC unit and the ALU.

2.1. Assembler Directives
Keywords found in a source file are called declarators. They determine the interpretation
of statements following, until another declarator is encountered. No commas are required
to separate multiple declarations in a block of like declarations.

2.1.1. Declarator: PROGRAM program_name
program_name becomes a global symbol in the object and header files. program_name
must appear on the same line as the declarator, and may not be a reserved keyword.

2.1.2. Declarator: PROGSIZE = n
or PROGSIZE <= n

The programmer issues one of these statements, where n is some constant expression
denoting the number of desired lines of code. The assembler issues an error or a warning
if the equality or inequality is not respectively true. This declaration is not mandatory.

2.1.3. Constant Declaration: DEFCONST
This declarator is typically found towards the beginning of all the declarations. Use the
= sign, no comma required. Multiple DEFCONST are allowed.

DEFCONST
 Sintable_Size = 256 Region_Size = 256 * $100
 Costable_Size = 256 Table_Size = 512 tblSize1 = 513

2.1.4. Register Declaration: DEFSPR, DEFGPR
SPRs and GPRs are respectively declared and optionally initialized here. GPR register
addresses may also be determined by the programmer if desired using @ . For example,
 DEFGPR
 some_gpr = 1024 @$3f ! $ means hexadecimal

The # symbol extracts the value of all symbols following in an expression.8 The value
of a number is the number itself, so the following declaration of some_gpr is equivalent.
 DEFGPR
 some_gpr = #1024 @$3f ! initialization and/or address optional
 some_other @$40

No comma is required. Multiple DEFSPR, DEFGPR are allowed. All register names
must be universally unique.

In general, in a DEFSPR, it is true that any SPR explicitly initialized should override any
assembler determination. Should the programmer wish to reserve any of the AGEN
DILs or DOLs for any purpose, the act of declaring them within DEFSPR has the desired

8See Value (extracted by #) Summary, or section on Fixed-Point Mathematics.

7

effect. The assembler then relinquishes those particular resources during scheduling.
Programmer override of region BASE, SIZEM1, and END initialization is not observed
by the assembler when determining AOR assignments.

2.1.5. AOR Declaration/External Memory Allocation: DEFREGION
This declaration is used for defining tables, delaylines, and absolute I/O regions of
external memory. Declaration of a particular region is allowed only once, no commas
required. AORs are declared and optionally initialized here. All names must be
universally unique. AORs become implicitly associated with the region under which they
were declared by default. Their register addresses may be optionally declared just as they
are for GPRs. For example:

DEFREGION Q[$10000] @256
mydelay[3032]
yourdelay[999] @3033
myOffsetRegister = $a70000

 somePointer = 0 @$200 ! initialization and/or address optional

DEFREGION R[Sintable_Size+1+Costable_Size+1]
sin[Sintable_Size]
cos[Costable_Size]

 table_pointer = &cos[0] !AOR initialized to root of cosine table

Declaration of the region size in DEFREGION r[region size] is optional9 as is the
physical location (@256) of the region start, but region size minimum is 1. Region
specifier, r, is required: I,P,Q,R,S,T,U, or V (= 0,1,2,3,4,5,6, or 7).

Declaration of the relative address offset of the beginning (the root) of an external
memory array (@3033), with respect to the physical start of the region, is also optional.
In the declarations above it should be clear that &yourdelay[0] = 3033 (& as in the C
programming language) is the root address offset of yourdelay[999], but its absolute
(physical) address is 256�+�3033.

Table and delayline sizes are not optional. If the region size, or table or delayline size
(specified within [�]) is written as a floating-point expression, it will be rounded to the
nearest integer by default. The programmer may explicitly indicate various math
functions (see Fixed-Point Mathematics) other than rounding.

9The assembler would set the SPR, SIZEM1r = region size - 1. If region size is not specified,
the assembler will automatically determine it. BASEr and ENDr would also be determined
automatically, whether or not region size is specified. BASEr is usually initialized to the region
start. All these region control register settings can be overridden in a DEFSPR.

8

External Memory Initialization
An extension of the DEFREGION syntax10 facilitates initialization of external memory
by a relocating downloader.11 The assembler issues directives to a downloader by
encoding the assembly .o and .bin object output files. For example:

DEFREGION P[Region_Size]=0
 sigmoid[Table_Size] : "filename"

 tblName1[tblSize1] : 3

This DEFREGION declaration shows an assignment (=0) that causes the assembler to
issue a directive to a downloader to initialize the entirety of region P in external memory
to 0. Any constant expression could have been used in place of 0 for the initialization
value.

The declaration of the external memory array, sigmoid[Table_Size], has an assignment
syntax (�:�) which causes the assembler to encode the ASCII name ID filename into its
.o and .bin output files. This becomes a directive to a downloader to use the contents of
the quoted file as the initialization of the external memory array. The array size can be as
small as 1 or as large as physical memory.

Likewise, the declaration of the external memory array, tblName1[tblSize1], has the
assignment syntax (�:�) which causes the assembler to encode an array identifier (ID=3)
into its .o and .bin output files. This becomes a directive to a downloader to use some
array (array number 3 in this case) from an established library as the initialization contents
of the external memory array. Any constant expression could have been used in place of
3 for the array identifier.

2.1.6. Declarator: CODE
This keyword must precede all instruction lines. Register, constant, and region
declarations are allowed within the body of the code. In that case, the keyword CODE
must appear again immediately following these interspersed declarations.

2.1.7. Attributes: LOCAL, GLOBAL
These two keywords may occur anywhere within the body of a DEFCONST, DEFSPR,
DEFGPR, or DEFREGION declaration, and with any frequency. GLOBAL will cause all
subsequent symbol declarations in the respective body to appear in the .hdr file
assembler output having the format of #define statements as in the C programming
language; LOCAL turns that off. Every new declaration defaults to LOCAL.

10As always under DEFREGION, @ is optionally available syntax following any assignment
 (: , =).
11See the External Memory Host Access Application.

9

2.1.8. Declarators: FAMILY, MEMBER
Each declarator encodes a following constant expression into a reserved field of the .o
and .bin assembler output files; the default encoded value is 255 if the declarator is not
employed. They are useful for making efficient parameter-control structures for the
system host and to organize multifarious ESP2 programs constituting a single commercial
product.

2.2. Instruction Syntax
An instruction line must contain a MAC unit operation.

MAC-operation

An ALU operation may follow a MAC unit operation on an instruction line. If none is
specified by the programmer, then the assembler will insert an ALU NOP.

MAC-operation ALU-operation

An AGEN operation may follow an ALU operation on an instruction line. If none is
specified by the programmer, then the assembler may schedule an AGEN operation there.
If no AGEN operations are required, it will insert an AGEN NOP.

MAC-operation ALU-operation AGEN-operation

One line of code is typically referred to as an instruction cycle.

Curiously, both the ALU and MAC unit NOPs are pseudo instructions, while the AGEN
has a dedicated NOP instruction. (Pseudo instructions are formulated within the
assembler as source/destination variations of the fundamental instructions.)

2.2.1. The Predominant Destination to Source Latency
ALU results have an inter-unit latency of one when sourced from the MAC unit. This
means that the ALU results become available to the MAC unit on the second queued line
of code following the ALU instruction. But MAC unit results are available to the ALU
on the first queued line of code following the MAC unit instruction; i.e., on the next
queued program line. (See the section called Pipeline for all cases by example.)

Whenever SPRs act as extra source/destination operands, they are accessed having the
same latency as the established source/destinations unless indicated otherwise.

10

2.2.2. Line Continuation
A single tripartite instruction line (one line of code, one instruction cycle) may be made
to occupy more than one printed line by placing a continuation symbol (the back-
slash,��\�) as the first character of text on a line.

parry: MACP + coef3 X delayline[333] > MAC >>3 > temp
\ ADD this, that > there
\ RD *chorusline > DIL0

2.2.3. Labels
An instruction line may contain a label. A label must be the first thing on a line and must
be followed by a colon.

mysubroutine: coef1 X temp > MAC MOV temp > lasttemp

 NOP MOV #mysubroutine > INDIRB

The value of the label is the number of the program line upon which it resides; the line
number corresponds to the Program Counter value when it hits that line of code. (The #
symbol tells the assembler to allocate a GPR whose contents is the value of the Program
Counter denoted by mysubroutine.)

2.2.4. Comments Within a Program
There are three styles of comments available within ESP2 programs and declarations:

1) A comment may start with an ! and end with another ! or end-of-line/carriage-
return; i.e., one ! will comment out everything to the end of the line. A second ! will
delimit the comment as in the C-style /* */ .

2) The C-style comments /* */ are also available. In this case the right side delimiter is
required, unlike ! style comments.

3) The ANSI-C notation, // , comments from that point to the end-of-line/carriage-
return.

11

2.3. Fixed-Point Mathematics
At assembly, the assembler evaluates expressions much like they are evaluated in the C
programming language. Specifically, there is the same dichotomy between integer and
floating-point math; viz: i%k vs. MOD(,) . Integer expressions are promoted to
floating-point expressions also as in C. Scientific notation is supported, and a special
binary-radix (q) notation is introduced to facilitate the assignment of floating-point values
to fixed-point 24-bit registers.

In declarations involving mathematical expressions, the programmer must bear in mind
that the math is being performed (assuming two’s complement) at the full precision of the
machine within which the assembler is executing. But when ESP2 register contents are
used within expressions, they are assumed two’s complement at 24 bits. This means that
register contents will be sign-extended to machine long-word precision before being used
in subsequent expressions. For example:

DEFCONST
 Big_Negative = $800000 ! (positive in 32 bits)
 Negative = $ff800000 ! (negative in 32 bits)
 Calculus1 = 0.5 * Big_Negative ! = $400000 (positive in 32 bits)
 Calculus2 = 0.5 * Negative ! = $ffc00000 (negative in 32 bits)
DEFGPR
 some_gpr = Big_Negative @5 ! register gets $800000 (negative 24 bits)
 some_other = 0.5 * Big_Negative ! register gets $400000 (positive 24 bits)
 gpr2 = 0.5 * some_gpr ! but this register gets $c00000 (negative 24 bits)
 gpr3 = #0.5 * some_gpr ! register gets 3 (2.5 rounded)
 gpr4 = COS(some_gpr) ! legal here in declarations. Contents used.
 gpr

The declaration of the hexadecimal ($) constant Big_Negative is assumed positive in the
calculation of Calculus1 because the assembling machine long-word size is 32 bits. But
notice that once the register some_gpr gets loaded, subsequent math employing the
contents of that GPR (as in the calculation of gpr2) sign-extends its contents before
performing the calculation.

We can also perform math using the value of symbols. The # symbol is used to
indicate the intent to use value rather than content.12 For example, the value of
some_gpr is its register address, 5�.

precedes all the elements of an expression in ESP2 syntax;

i.e., we do not allow any appearances of # within an expression. This means that any
expression preceded by # is assumed to use only symbol values in its evaluation.

12See the Value (extracted by #) Summary under the delayspec Chart in the AGEN chapter.

12

Continuing from the declarations above:

CODE
NOP MOV #0.5 * some_gpr > gpr4 ! gpr4 gets 3 .

 error
NOP MOV 0.5 * some_gpr > gpr5 ! error here but not in declarations.

This last example shows that register contents are not allowed as operands in expressions
appearing in the code as they are allowed in the declarations. There are two reasons for
this:
1) In-line expression operators make the code unreadable because the functions of the
ESP2 chip itself become confused with the operators in the expression. (In the
expression above, one might conclude that there were a multiplier in the ALU.)
2) From the expressions, it is not clear whether the operations are being performed on the
register values (their addresses) or their contents. If contents were assumed, only
initialization contents are known to the assembler. Yet the code seems to call for current
contents, hence making it unreadable.

It is imperative to distinguish between in-line math expressions appearing in the code,
and ESP2 chip operations. The in-line math is performed at assembly time, and is
provided as a convenience to the programmer who may prefer in-line expressions to
constants declared in a DEFCONST.

Continuing...
NOP ADD #(1+gpr), B ! legal (gpr address used).

 error
NOP ADD COS(#gpr), B ! illegal because # must be at beginning.
NOP ADD #COS(gpr), B ! legal (gpr addr. used). Cosine function.

 error
NOP ADD COS(gpr), B ! illegal because implies contents used.

 error
NOP ADD 1+gpr, B ! illegal because implies contents used.

This last example is ambiguous because it is not clear whether it is the contents of that
GPR whose register address is one past gpr which is desired, or 1 added to the contents
of gpr which is desired. In a running program, the contents of gpr are likely to change.
If we had established the convention that contents were to be used, then the assembler
would only have knowledge of initialization contents. The ESP2 does not have the
means, in general, to change the contents of the A-operand prior to the operation with the
B-operand.13

13For treatment of gpr as the base of some internal register array, the syntax provides a register
indexing construct.

13

2.3.1. Assembly-Time In-Line Math Functions
Excerpts from the C programs which constitute the math portions of the assembler
program itself follow. These enumerate the available functions while showing how they
are internally defined.

/*------------------------------------
 Math Functions (from espdata.c)
 --------------------------------------*/
 GRefstruct fun_data[�]= /* math-function mnemonics */
{ /* (see also espdata.h) */
 {"SIN", AP_SINX},
 {"COS", AP_COSX},
 {"TAN", AP_TANX},
 {"ASIN", AP_ASINX},
 {"ACOS", AP_ACOSX},
 {"ATAN", AP_ATANX},
 {"SINH", AP_SINHX},
 {"COSH", AP_COSHX},
 {"TANH", AP_TANHX},
 {"EXP", AP_EXPX},
 {"LN", AP_LNX},
 {"LOG", AP_LOGX},
 {"SQRT", AP_SQRTX},
 {"CEIL", AP_CEILX},
 {"FLOOR", AP_FLOORX},
 {"ABS", AP_ABSX},
 {"INT", AP_INTX}, /* integer result */
 {"BTRUNC", AP_BTRUNCX}, /* integer result */
 {"ROUND", AP_ROUNDX}, /* integer result */
 {"ATAN2", AP_ATAN2YX}, /* 2 arguments */
 {"MOD", AP_MODXY}, /* 2 arguments */
 {"RSH", AP_RSHXY}, /* 2 integer arguments; integer result */
 {"LSH", AP_LSHXY} /* 2 integer arguments; integer result */
};

Exponentiation is supported via the old ** Fortran notation. The C-language boolean
operators, such as & , | , ~ , and ^ , (AND, OR, one’s complement (bit flip) operator,
and XOR) are also recognized in expressions at assembly. & also has meaning in the
AGEN unit syntax and is widely used there, so context is critical for its successful use.

14

2.3.2. Truncation Mathematics.

Assembly-Time Math Function Definitions:
Magnitude Truncation, Rounding, and Truncation
/* double result, val1, val2; *//* (from espeval.c) */

/*---
 Integer functions: These functions return an integer-type
 value. RSH and LSH require integer-type arguments.
 ---*/
 case AP_INTX: /* INT (CExpr) */

 case AP_ROUNDX: /* ROUND (CExpr) */

 case AP_BTRUNCX: /* BTRUNC (CExpr) */

 case AP_RSHXY: /* RSH (CExpr , CExpr) */

 case AP_LSHXY: /* LSH (CExpr , CExpr) */

 {

 switch (root->CHILD->usem.ival)

 {

 case AP_INTX: /* magnitude truncation */

 result = floor(fabs(val1)) * SIGNUM(val1);

 break;

 case AP_ROUNDX: /* rounding */

 result = floor(fabs(val1) + 0.5) * SIGNUM(val1);

 break;

 case AP_BTRUNCX: /* truncation */

 result = floor(val1);

 break;

 case AP_RSHXY:

 if (!int_op) error (ERR_OPNDINT);

 result = (long) val1 >> (long) val2;

 break;

 case AP_LSHXY:

 if (!int_op) error (ERR_OPNDINT);

 result = (long) val1 << (long) val2;

 break;

 }

 rtn = new_sem (FIXED);

 rtn->usem.ival = (long) result;

 break;

 }

Shown are the C-program definitions of the three truncation functions and left/right
arithmetic shift functions recognized at ESP2 program assembly. The truncation
functions (magnitude truncation, rounding, truncation) operate on floating-point numbers
and produce integer results. Magnitude truncation and rounding are symmetrical
functions. On many machines, it is helpful to keep in mind that the (int) or (long) C-cast
of a floating-point number actually performs a magnitude truncation. The SIGNUM()
macro returns (1.,�0.,�-1.) for strictly positive, zero, and negative arguments, respectively.
Recall that the floor(x) function, defining truncation, returns the largest integer not
greater than��x�; truncation simply throws away or masks off the fractional part.

15

Real-Time Compute Statistics
Although the defined truncation functions are only used at assembly, it would be
interesting to analyze the statistical impact of each function type when used in real-time
computation; e.g., say in an ESP2 program executing some digital filter algorithm. For
that application, the meaning of the truncation functions regards the handling of what is
considered to be the fractional part (the LSBs to the right of the radix point) of some
binary word. An example might be the conversion from a double precision (48-bit) result
to single precision (24-bits). The most notable outcome is that the use of magnitude
truncation introduces noise into the signal which is statistically 6�dB higher in power than
that produced by either rounding or truncation. Further, rounding and truncation produce
the same noise power, but truncation, having a DC offset of one-half quantum, is not a
zero mean process. These results could be explained by considering both the magnitude
and sign of the quantization errors of each truncation function. [Jackson,ch.11.2]

0

Truncation Rounding Magnitude Truncation

223 - 1

-223

Figure MT. Direction and relative magnitude of change after
 quantization of any 24-bit two’s complement number.

Alternately, in Figure MT the action of each truncation function is represented in terms of
the change to some two’s complement number. None of the truncation functions can change
a positive number to a negative number, or vice versa. The truncation function simply called
‘truncation’ has no point of symmetry; it causes the same direction of change anywhere in the
continuum. This lack of symmetry accounts for the statistical DC offset. Of the three
truncation functions, both rounding and truncation have the propensity for returning values
which exceed the magnitude of their arguments. This idiosyncrasy has been shown to be one
of the causes of limit cycle tones produced in direct form and lattice digital filter topologies.
[Jackson,ch.11.5] Magnitude truncation does not share this characteristic and can sometimes
remedy limit cycle oscillation. [Smith] (See the Reverberation Application.)

In Figure MT it is indicated that truncation will increase magnitude of only negative
numbers, whereas rounding can increase the magnitude of all numbers. Further, truncation
always increases negative number magnitude, but rounding does not always increase
magnitude (explaining the bidirectional arrows). On the other hand, magnitude truncation
always decreases magnitude of both positive and negative numbers.

16

Real-Time Compute Implementation
We wish to know how the truncation functions are each implemented in the binary
domain. For the sake of illustration, let us assume that we are given 24-bit two’s
complement binary numbers in q8 format (discussed shortly):

DEFGPR
val1 = $007FFF ! q8 means $007F.FF = 127.99609375

 val2 = $FF8001 ! q8 means $FF80.01 = -127.99609375

binary magnitude truncation
In the binary domain, the corresponding operation to magnitude truncation is:

Pseudo-code: if(val < 0) val += $0.FFF...�; /* binary magnitude truncation */

 val = binary truncate(val); /* discard bits to right of binary point */

For the two values, after binary magnitude truncation: val1 = $007F00, val2 = $FF8100�.
This is how magnitude truncation might be programmed in a real-time computation
within the ESP2. In hexadecimal we are adding 0.999... to val when it is negative.
We conditionally add $0.FFF... to val, rather than $1.0, to avoid bumping up a perfect
negative integer. This implies that if any of the fractional bits of val are nonzero when it
is negative, then magnitude truncation will increase val.

But as it often happens in ESP2, the given 24-bit binary number may itself be the MSBs
(most significant bits) of a higher precision 48-bit result. It is likely that the 24 LSBs
(least significant bits) of the higher precision result were nonzero and the situation is such
that we are not sure. Statistically, it is much better to err on the side of caution if we do
not know what those higher precision LSBs were. So in this circumstance,14 we would
amend the Pseudo-code to conditionally add $1.0 to val instead of $0.FFF...� .

binary rounding
Curiously, in the case of two’s complement binary rounding there is no conditional
addition. In the binary domain, the corresponding operation to rounding is:

Pseudo-code: val += $0.8; /* binary rounding */

 val = binary truncate(val); /* discard bits to right of binary point */

For the two given values, after binary rounding: val1 = $008000, val2 = $FF8000�.
This is how rounding might be programmed in a real-time computation within the ESP2.
In hexadecimal we are unconditionally adding 0.5 to val regardless of its sign.15

14This is, in fact, how the magnitude truncation mode is actually implemented in the ESP2
external memory data interface (see the Chip Spec.). As such it is, theoretically, more applicable
to magnitude truncation of double precision results.
15When comparing rounding results in the floating point domain with the corresponding results
in the binary domain, it is wise not to use test values having a fractional part = 0.5 exactly,
because this case produces different results in each domain. To solve this quandary we invoke
Reagan’s theorem; it ‘doesn’t matter’. (Appendix II)

17

binary truncation
In the binary domain, the corresponding operation to truncation is simply:

Pseudo-code: val = binary truncate(val); /* binary truncation */

 /* discard bits to right of binary point */

For the two given values, after binary truncation: val1 = $007F00, val2 = $FF8000;
the 8 LSBs are masked off, or simply discarded.

One useful fact regarding truncation is that the fractional part (rather, the part that is
discarded or masked off) is always positive in sign. This fact could be used to advantage
within a digital filtering circuit having truncation error feedback for the purpose of
minimizing truncation noise.16 [Dattorro]

 - (-2
15

 b23 +

-

Figure TruncPos. Example showing how truncation error is always positive.

0000000 0

b0b1b2b4b5b6b7 b3.0

 -2
15

 b23 + 2
-m+15

 b23-m
m=1

23

∑ 2
-m+15

 b23-m) 2
-m+15

 b23-m

b23 b14 b9b10b11b12b13b15b16b17b18b19b20b21b22 b8.
00 0000000000000

m=1

15

∑ = ∑
m=16

23

y[n]

e[n]

-

b22 b14 b8b9b10b11b12b13b15b16b17b18b19b20b21b23 b0b1b2b4b5b6b7 b3.
[]nŷ

Figure TruncPos shows the example of truncating any 24-bit q8 two’s complement
number by taking the 16 MSBs and discarding the 8 LSBs. We are interested in the sign
of the error e[n] that results from subtracting the truncated number []nŷ from the full-
precision number y[n]; i.e.,

 [] [] [] 0nenŷny ≥=−

Since the bi can only take on the value 0 or 1, in two’s complement, the stated result
follows regardless of the sign of y[n]. By induction, this result extends to other q and
other truncation widths.

16This noise, due to ongoing internal signal quantization error, is also known as roundoff noise.
[Jackson] Truncation error feedback is also known to minimize limit cycle oscillation [Laakso],
thus providing an alternative to magnitude truncation as a remedy.

18

2.3.3. Scientific and Binary-Radix Notation
These notations are both of the form:

mantissa*radix**exponent

Scientific notation has radix 10, while binary-radix notation has radix 2.

The assembler supports scientific notation of floating-point constants as in, for example,
7e-3 which is mathematically equivalent to 7*10**-3�. Substituting an expression for

the mantissa is not allowed in our language; i.e., using the same example,
expression e-3, is not allowed. (An expression would consist of arithmetic operations
on symbolic names and/or numbers.) Blank space is neither permitted before the ’e’.

Binary-radix q notation is similar; for example, 7q3 is defined as mathematically
equivalent to 7*2**3 (q for quanta). This notation comes in handy when we wish to

specify the location of the binary point in a fixed-point number which is to be assigned as
the contents of some register; i.e., to specify the register format. Figure Twos shows the
two most commonly used formats for digital filtering coefficients. In Figure Twos (a),
the range of coefficient is [-1., 1.), whereas17 for (b) it is [-2., 2.).

Figure Twos. Two’s complement fixed-point examples: M=24 bits.

fixed-point q23 register content = -2
0
 bM-1 + 2

-m
 bM-1-m∑

m=1

M-1

fixed-point q22 register content = -2
1
 bM-1 + 2

-m+1
 bM-1-m∑

m=1

M-1

b14 b0b1b2b4b5b6b7b8b9b10b11b12b13b15b16b17b18b19b20b21 b3.b22b23

b14 b0b1b2b4b5b6b7b8b9b10b11b12b13b15b16b17b18b19b20b21b22b23 b3.

Unlike scientific notation, binary-radix notation can substitute a complete mathematical
expression for the mantissa, and blank space is permitted before the q. (The complete
expression can even include floating-point numbers in scientific notation.)

17This notation means that the positive extreme cannot be exactly reached.

19

When the assembler encounters a floating-point expression by itself (no q notation)
whose magnitude is less than 1.0, it assumes that the expression will be represented
within some assigned 24-bit register as q23�. This means that the floating-point value
will be multiplied by 2**23, by default, before the register is initialized.18 That result is
rounded (also by default) to the nearest integer and then assigned as the contents of the
register. This places the binary point one bit away from the MSB in the 24-bit register,
rather, 23 bits away from the LSB.

If a floating-point expression is found by itself whose magnitude is greater than or equal
to 1.0, then the assembler assumes q0 (=1) as default in that case. This places the binary
point, in the 24-bit register, 24 bits away from the MSB (or 0 bits away from the LSB).

One way to look at binary-radix (q) notation, then, is as conversion from a floating-point
representation, floating.expr, to fixed-point representation. In the conversion process, we
can change the default scalar via the q notation; e.g.,

 some_register = floating.expr q22

This declares the binary point in the 24-bit register to be fixed at two bits away from the
MSB (or 22 bits away from the LSB).

Generally speaking, any complete expression followed with binary-radix q notation will
be multiplied by 2 raised to the indicated power. But we should instead think of q
notation as a mnemonic tool which provides the location of the binary point within some
fixed-point register, as in Figure Twos.

18q23 is the maximum binary radix locator in 24-bit two’s complement fixed-point.

20

2.3.4. Fixed-Point Arithmetic within the ESP2
Now we turn to the subject of numerical computation within the executing ESP2 function
units. The rules of fixed-point arithmetic are easy when the q notation is employed.

Addition and Subtraction
Rule 1) For ESP2 to add or subtract two fixed-point numbers, they must have the same
binary point; i.e., the same q.

If they do not have the same q then the various shifters in the ESP2 can be used to bring
them into alignment.

Multiplication
Rule 2) Using ESP2, when multiplying a 24-bit (two’s complement) number having qN
with another 24-bit number having qM, the product is a 48-bit number19 having
q(N+M+1). The 24 MSBs of the product is q(N+M+1 - 24).

The extra 1 in Rule 2 comes from the ESP2 signed multiplier having a built-in permanent
shift-left-1 of the product to remove the extra sign bit. Most often, only the MSBs of an
accumulation of products constitute some desired result. So, for example, suppose we
multiply a q0 signal at 24-bits (typically 16 bits of signal left-justified into a 24-bit word) by a
q23 coefficient at 24 bits. The ESP2 result is a 48-bit product at q24. Now, if we
truncate the least significant 24 bits storing only the MSBs, we end up with a 24-bit result
at q0. In this case, the q of the result is the same as that of the signal.

2.3.5. Numerical Precision
If the programmer is scrupulous, it is not too difficult to implement block floating-point
arithmetic. Block floating-point arithmetic is a numerical implementation of an
algorithm using a fixed-point processor where the binary-radix point of a block (some

collection or group) of operands is fixed, but only over some intermediate portion of a longer
computation. A different block (or the same block computed at a different phase of the program)
may then have a different binary point location. The block floating-point technique finds
use as applied to FFT (Fast Fourier Transform) [Analog�Devices] [Kim/Sung] or amplitude
compression algorithms implemented on fixed-point processors having barrel shifters.
When the fundamental word-size of a fixed-point processor is large enough (24 bits as in

ESP2), the need for block floating-point diminishes and fixed-point computations may
suffice.20 An alternative to block floating-point is double precision arithmetic which
ESP2 supports.21

19having 4 bits of sign extension,
20See the FFT Radix-4 Application.
21See the FFT Radix-2 Application.

21

2.4. GPR/AOR Array Declaration
The syntax provides a construct useful for manipulating internal register data organized
as a register array or vector:

DEFGPR
 some_gprs = 1 @$2...$80 /* initializes entire array to same value */

Alternatively,

DEFGPR
 some_gprs = 1 @$2 /* (some_gprs, 0) not allowed here but OK in code. */
 (some_gprs, 1) = 7
 : :
 : : /* use this method to initialize to different values */
 (some_gprs, $7e) = 40

The same rules apply to AORs.

DEFREGION R
 some_aors = $100 @$200...$233

As shown, an array of GPRs is declared (allocated) and (optionally) initialized. The same
is done for a group of AORs. Note the allowable addresses for the respective register
arrays in the Chip Spec. (see the section on Chip Architecture). The programmer should
be cognizant of the current register allocation through examination the listing (.lst) file.

2.4.1. Internal Register Array Reference

CODE
MOV (some_gprs, n) > destin
MOV (some_aors, 1) > destin2
MOV (some_aors, 0) > destin3

Reference to a GPR and two AORs within their respective array are shown. The GPR
whose contents are moved to destin has an address which is that of some_gprs plus n,
for n a constant expression. Similarly, destin2 gets the contents of the AOR at address
$201.

This (register array name, index) reference to an AOR may be substituted anyplace
where an AOR reference is legal. Double parentheses may be required to reference an
AOR having an explicit region specifier; for example:
 ((some_aors, -7))R
Note that the assembler recognizes negative indices for this internal register array
construct.

2.4.2. Array/Register Clear
It is up to the programmer to zero all critical registers, specific to an application program,
in the declarations.

22

2.5. #include filename
The ESP2 assembler has a feature which allows #include statements as in the C
programming language. The ESP2 assembler just expects a filename, however; no
quotes or triangle brackets are required. The included file is typically used for the
declarations of constants, but can be used for any declarations.
A possible usage would be to alias SPR names as follows:

DEFCONST
 BASEi = #BASEI // # symbol extracts value which is SPR address this case.
 BASEu = #BASEU
 YI = #DILD
 YI2 = #DILC

Nested #include is allowed.

2.6. Conditional Execution
Curly braces {} may be placed around any individual instruction in the MAC unit, and/or
the ALU, and/or the AGEN unit field to independently specify conditional execution.
Further, all individual unit instructions can be conditionally executed. The curly braces
enclosing a particular instruction field indicates that the corresponding skip bit is set for
that function unit. When the skip bit is set, if the Condition Mask Register (the SPR
called CMR) satisfies the Condition Code Register (the SPR called CCR)22 at the time
the conditional instruction is about to be executed, that instruction will be executed;
otherwise that instruction will be skipped. A skipped instruction still consumes program
time equal to one instruction cycle, however.

The CCR is set automatically only by the ALU on every instruction cycle, and the
outcome is discernible to all three function units for the purpose of conditional execution
on the next queued line of code. Since the CCR is also mapped as an SPR, it can be
manually written to restore its state if necessary. The safest way to do so is by use of the
ALU MOV instruction (or MOVcc, or RScc). Manually loading the CCR any other way
offers some interesting, but not necessarily useful results. (See the Chip Spec. for more
details.)

22This concept is found in conventional microprocessor design for decision making based upon
arithmetic and chip status. In ESP2, individual bits of the CCR correspond to various states of the
chip. Logical combinations of these bits often yields more precise information. The CMR is
used to mask the desired combinations.

23

The proper interpretation of a curly-braced field is that the corresponding unit’s
instruction becomes conditionally executed depending on the status of its skip bit and
the CMR’s relation to the CCR; i.e., if the associated skip bit is asserted and the
Condition specified by the CMR is satisfied. The list of CMR masks can be found in the
Chip Spec. and includes the Conditions: NEV (never), ALW (always), IOZ (masks the read-

only IOZ status bit in the CCR which is a function of the IOZ input pin of the synchronization interface),
IFLG (masks the read-only IFLG bit in the CCR which is an image of the IFLAG input pin hardware

semaphore of the synchronization interface),23 GT, LT, GTE, etc...
For example:

NOP MOV #NEG > CMR !see IF pseudo using MOVcc

NOP SUB non_negative_constant, ZERO > somewhere
{this X that > MAC, there} ADD mine, yours > ours

In this example, only the MAC unit instruction field is conditionally executed based upon
the CCR outcome determined in the ALU operation on the previous line of code. The
Condition being checked for is negativity, as shown in the first line of code having the
load of the CMR from a GPR. That GPR is holding the value of the negativity Condition
denoted by the keyword NEG. We discuss a more efficient load of the CMR, shortly.

2.6.1. cc-class Instructions
Some of the ALU’s 32 fundamental instructions have a feature which allow the CMR to
be unconditionally preloaded and then immediately used to determine whether the
instruction on the very same program line will be conditionally executed. Notably, the
Jcc, JScc, RScc, and MOVcc instructions24 have this feature. For example:

NOP SUB non_negative_constant, ZERO > somewhere
NOP {MOV gpr1 > gpr7, NEG > CMR} ! use MOVcc instr.

In this example, gpr1 is conditionally moved to gpr7 if the outcome of the previous ALU
operation was negative. This feature of the MOVcc instruction saves us one line of code
and one GPR, avoiding an explicit MOV to CMR as in the previous example.

The mask we have designated to represent the negativity Condition is itself stored in the
A operand (address) field of the 96-bit microinstruction; It is not stored in the A operand.
In contrast, the B and C operands are gpr1 and gpr7 (i.e., two GPRs). Thus, the
assembler must determine what the NEG mask is and then assemble that into the MOVcc
instruction’s A operand field. The A operand field always gets moved into the CMR by
the instruction, prior to the decision to conditionally execute {}. Also, the skip bit
corresponding to the ALU instruction field must be asserted by the assembler for that
ALU MOV instruction, as requested.

23An image of the OFLAG output pin of the synchronization interface is not incorporated into
the CCR.
24There exist two ALU MOV class instructions: MOV and MOVcc (conditional MOV). See
the section called MOV Pseudo Instruction.

24

This leads to another use of the MOVcc, RScc, JScc, and Jcc instruction types:

NOP MOV gpr1 > gpr7, NEG > CMR ! use MOVcc instr.

In this example, the lack of curly braces indicates that the ALU’s skip bit is not set. The
MOV of gpr1 to gpr7 will, therefore, always take place regardless of the CCR outcome
on the previously executed program line in the ALU. The CMR still gets preloaded with
the mask we have designated to represent the negativity Condition. This is a great
convenience for subsequent conditional queued lines of code as it may save one
instruction.

Here is an esoteric example:
NOP MOV gpr1 > gpr7 ! use MOV instr.

NOP {MOV gpr1 > gpr7, ALW > CMR} ! use MOVcc instr.

Each of these two lines of code always loads gpr7 with the contents of gpr1. Regarding
the second program line, since the CMR is unconditionally preloaded with a Condition
Mask designated to represent the always Condition, the MOV (of gpr1 to gpr7) will
unconditionally take place, even though the instruction is made conditionally executable
by the curly braces.25 As there is no ALU operation that could put the CCR in a state
that represents the ALW Condition, it is the mask which is designed to satisfy any state of
the CCR that determines the ALW Condition.26

2.6.2. Conditional Execution Latencies of the CMR
The ALU’s IF pseudo instruction is defined by the assembler utilizing the MOVcc
instruction; viz,

 IF Condition
is the same as writing

 MOV ZERO > ZERO, Condition > CMR

The IF pseudo accomplishes an unconditional preload of the CMR while using read-only
SPR ZERO as the standard destination. The programmer is free to explicitly MOV to
CMR, but the use of MOVcc (hence IF) suffers less latency as will be shown by example.
For this reason there is no IF pseudo in the MAC unit. (Also recall that the CCR is
automatically set only by the ALU.)

In the following examples, Condition connotes some arbitrary Condition that might be
desired by the programmer, while we choose POS (specifically, the positivity Condition)
as another Condition to play against. We also choose the MOVcc instruction from the
cc-class instructions, to preload the CMR in some examples. Substituting another cc-
class instruction should yield the same conditional execution latency.

25The assembler should respect the programmer’s wish to set the skip bit for this instruction.
26Likewise, there exists a NEV (never) Condition.

25

 MAC unit ALU comment
 NOP IF POS ! pseudo uses MOVcc instr.

 NOP ADD A, B ! CCR set by ALU

 {result X gpr3 > gpr4} {some_instruction} ! MAC and ALU conditional

 NOP ADD A, B ! CCR set by ALU

 NOP IF POS ! arithmetic CCR remains valid

 {result X gpr3 > gpr4} {some_instruction} ! MAC and ALU conditional

 NOP ADD A, B ! CCR set by ALU

 {result X gpr3 > gpr4} IF POS ! MAC executes if previous ALU POS

 NOP ADD A, B ! CCR set by ALU

 {result X gpr3 > gpr4} MOV gpr1 > gpr7, POS > CMR ! MAC executes if previous ALU POS

 NOP ADD A, B ! CCR set by ALU

 {result X gpr3 > gpr4} {MOV gpr1 > gpr7, POS > CMR} ! MAC and ALU conditional

 NOP ADD A, B ! CCR set by ALU

 NOP {IF Condition} ! leave IFLG and IOZ flags alone

 {some_instruction} MOV #POS > CMR ! MAC conditional on Condition

 {result X gpr3 > gpr4} {MOV gpr1 > gpr7} ! MAC and ALU conditional on POS

 NOP ADD A, B ! CCR set by ALU.

 {some_instruction} IF POS ! alatent!

 {result X gpr3 > gpr4} {MOV gpr1 > gpr7} ! 2 MACs and ALU conditional on POS

In all cases above, the AGEN fulfills the same latency rules as the MAC unit.

 AGEN
 NOP ADD A, B NOP ! CCR set by ALU

 NOP IF Condition ! IFLG and IOZ flags possibly altered

 MOV #POS > CMR {some_instruction} {some_instruction} ! ALU and AGEN conditional on Condition

 {result X gpr3 > gpr4} {MOV gpr1 > gpr7} {some_instruction} ! MAC,ALU,and AGEN conditional on POS

 error

MOV #Condition > CMR cc-class ALU instruction ! illegal; NOT ALLOWED BY HARDWARE

26

2.6.3. Exceptions to Conditional Execution
There are four cc-class instructions which incorporate a simultaneous preload of CMR as
part of their designed function: these include Jcc, JScc, RScc, and MOVcc. The move to
CMR in these cases always takes place and cannot be inhibited. This must be considered
in any conditional execution of these instructions.

One immediate consequence regards the IF pseudo as previously defined. Writing
{IF Condition}

accomplishes the same unconditional preload of the CMR as does
 IF Condition

But {IF��Condition} is useful when it is desired to update none of the bits in the CCR;
without {}, the IFLG and IOZ flags will be updated. This is the second reason to use the
IF pseudo in preference to an explicit unconditional MOV to CMR.

If it is truly desired that an IF�Condition statement be conditional with regard to the
loading of the CMR, then the programmer can always resort to the explicit,

 {MOV #Condition > CMR}
keeping in mind the increased latency as illustrated in the examples above. As always,
any conditionally executed instruction leaves all the CCR bits unchanged.

Instructions which cannot be used reliably within a conditional block of code are the
LIM, SUBB, ASDL, and ADDC instructions. This is so because these ALU instructions
incorporate the CCR flag states in the execution of their prescribed function. Since any
previously queued conditionally executed instruction {} does not alter the CCR by
design, then these four instructions would not be given their proper requirements. The
conditional execution of these instructions is not prohibited by the assembler although
warnings are issued when they are found conditional. These warnings are reminders that
it is the previous queued instructions to look out for.

Conditionally executed AGEN coding in the MAC unit or ALU instruction field (see the
section ahead on the AGEN) is dangerous. This is because the scheduled AGEN
instruction-field {code} produced by the assembler (found in the AGEN listing) is most
often not on the same instruction line as the MAC unit or ALU field source code which
requested the external memory access. In that case, the CCR is not necessarily in the
same state on both the requesting instruction line and the scheduled line. For this reason,
conditionally executed AGEN coding in the MAC unit or ALU instruction field should be
written carefully, also making sure the CMR is in the desired state in both locations. The
assembler does not disallow this type of coding, although appropriate warnings are
issued.

27

2.6.4. Conditional Execution, in Summary:

- Regarding one line of code, any function unit’s operation (the MAC unit’s, and/or the
ALU’s, and/or the AGEN’s) can be conditionally executed {} independently of any other
but based on the same CMR and CCR.

- The CCR is automatically set only by the ALU.

- All ALU instructions automatically update the IFLG and IOZ flags in the CCR.

- Conditionally executable instructions {} never alter the CCR, regardless of whether they
are executed.

- The ALU’s CCR result is discernible by all function units on the next queued line of
code for the purpose of conditional execution.

- All cc-class instructions unconditionally preload the CMR. The new CMR applies to all
conditionally executable operations for all function units appearing on the same program
line and on all subsequent queued lines until another Condition is loaded.

- When the programmer does not specify a preload to CMR, the assembler will prefer to
utilize the MOV instruction instead of MOVcc.27

- If the programmer does not specify a preload of the CMR for JMP class instructions, the
assembler will choose the ALW (always) Condition.28

- Conditionally executable instructions {} always consume program time equal to one
instruction cycle.

27Discussed under Branching, Moving, and Pseudo Instructions.
28ditto

28

2.7. Shift Pseudos in the MAC unit and ALU / Constant Expressions
The ALU has the fundamental AS and LS instructions which store the shift amount in the
A operand. That is, a GPR/AOR can be used to hold the shift amount. This is useful for
computed shifts. Within the normal MAC unit syntax we have the >> or << operator
which specifies that a shift amount follows in a constant-expression. This constant is
stored in the MAC unit field of the microinstruction 96-bit word.

Both the MAC unit and ALU have shift pseudo instructions as an augmentation to the
normal syntax. The ALU has two shift pseudo instructions which allow the specification
of constant shift amounts. If a computed amount is desired, then the ALU shift
instructions (AS, LS) should be used instead. The syntax for the ALU shift pseudo
instructions is:

ASH B >>const.expr > C or ASH B <<const.expr > C ! arithmetic

LSH B >>const.expr > C or LSH B <<const.expr > C ! logical

The value of the constant expression, const.expr, is actually stored in the A operand of the
AS and LS instructions respectively. The constant expression in the pseudo can be
positive or negative.

A constant expression is a mathematical statement of constants and/or symbolic constants
such as:
 INT(LOG(N)/LOG(Radix)) - 7

Register names are not generally allowed in such expressions because of ambiguities
which arise in the syntax. Although the # symbol is often used (always placed at the
beginning of an expression) to extract the value of all following symbols such as register
names, it is not allowed where a constant expression is expected by the assembler.

The MAC unit has a shift pseudo instruction which has the same syntax as the ASH
pseudo of the ALU. This homogeneity is desirable.

ASH D >>const.expr > F or ASH D <<const.expr > F !arithmetic

The shift amount is, as for the primitive MAC unit syntax, stored within the MAC unit
microinstruction field. For both the ALU and MAC unit,
 ASH dest >>const.expr
is an acceptable pseudo instruction syntax implying dest as the destination.

Now we give some examples of constant expressions appearing in the code which are
allowed or not:

 ASH dest >>3 ! ok
 ASH dest <<1+16/4 ! ok
 ASH dest <<-1 ! ok
but,
 error
 ASH dest <<gpr ! illegal

29

This is an error because it might imply that the contents of gpr is used as the shift
amount; some GPR name, gpr, was erroneously used in a place where a constant
expression is expected. (The fundamental AS and LS instruction use the contents of the
A operand (the programmer’s first operand) as the shift amount.)

 error
 ASH dest >>#(1+gpr) ! illegal because # disallowed where constant expression expected

The # symbol in this expression implies that some GPR would be allocated and
initialized to the value of (1+gpr) at that point. (The value of the name, gpr, extracted by
#, is its register address.) But the # is not expected by the assembler in front of this
constant expression, so it is an error.

 error
 ASH dest <<#1 ! illegal because # disallowed for same reason as before.

Wherever constant expressions are expected, the same rules apply as in the previous
examples; external memory array indices, for example:

 error
 MOV delay[#(3+gpr)] > dest ! illegal
but,
 MOV delay[3 + 7/3] > dest ! is legal

The # symbol generated an error because it is a directive to allocate some GPR, when
encountered in the code, initialized to the value of the succeeding expression. This is
certainly not what is expected from a constant expression.

 error
 MOV delay[3+gpr] > dest ! illegal

The expression within [�] is generating an error because the meaning of the gpr register
is ambiguous. This usage might imply that its contents are being used as some index. As
this is not within the capabilities of the ESP2, this construct is disallowed by the
assembler.

30

3. MAC unit
The MAC unit has 20 distinct fundamental instructions and 10 variants which provide
many combinations of shifting, multiplying, and accumulating(±). The specific MAC
unit operation is specified by the placement of mathematical symbols between the
operands (unlike the ALU).

3.1. Sources
The first source operand, D, can be nearly any register on chip. The second source, the E
operand, is restricted however; it may not access AORs. The reserved upper case X
symbol represents the operation multiplication, and must always be present between the
two sources; viz,

 D X E > MAC, F

A third source operand (the seed source) may be either the double precision MAC latch,
MACP (the MAC Preload latch), or MACZ (the MAC unit’s internal zero seed source,
MACZERO), followed by a �+��or��-��. For example,

MAC + D X E > MAC, F
MACP - D X E > F
MAC - coef1 X lastx > MAC
MACZ - D X E > MAC, F same as -D X E > MAC, F

When no third source operand is specified, MACZ is assumed.

3.2. Destinations
The MAC unit destinations must be specified; there is no default destination as there is in
the syntax of the ALU. The MAC unit accumulator result can be written to either or both
the double precision MAC latch and the single precision destination register specified by
the F operand (24�MSBs).

D X E > MAC, lastx means MACZ + D X E > MAC, lastx

When only the MAC latch is specified as a destination, the F destination operand is
assembled to be the ZERO SPR (which is read-only, and different from MACZERO).

D X E > MAC means MACZ + D X E > MAC,�ZERO
In many constructions it is possible to write the result to F and not to the MAC latch!

D X E > coef1 means MACZ + D X E > coef1
The previous MAC latch contents are preserved.

No matter what destinations are selected by the programmer, the low-order conditionally
saturated MAC unit results (24 LSBs) are sent to the MACRL (MAC Result Low) latch
on every instruction cycle.

31

3.3. The MAC unit Registers
The MACP latch is a Preload register which seeds the accumulator under program
control. (Review, at this point, the MAC unit architecture diagram in the Chip Spec.)
The accumulator can take as seed-source either the MAC latch, MACP, or MACZ
(MACZERO).

Both MAC and MACP are latches internal to the MAC function unit. When directly
reading the MAC unit, one is accessing the unsaturated MAC latch. When directly
writing to the MAC unit, one accesses the MACP latch. These two latches are accessible
via SPRs. One nice consequence of this is that the SPRs associated with the MAC
function unit are allowed as sources and destinations to the MAC unit itself, as would be
any other SPR, but with two restrictions:

3.3.1. Writing to MACP
When writing to the MAC unit, one accesses the MACP latch. The high-order 24 bits
can be initialized via loads of the MACP_HC or MACP_H SPRs. When the
programmer types the pseudonym, MACP, as a destination, this is defined as equivalent
to the SPR, MACP_HC, by the assembler. (A load of MACP_HC clears the low
24�bits of the MACP latch while loading the high-order bits. A load of MACP_H is a
simple load to the high-order MACP bits.) From the ALU, specifying MAC as a
destination is disallowed by the assembler. This is because one might be led to believe
that the MAC latch itself may be preloaded; this is not the case. Only the MACP latch
can be initialized. The low-order MACP bits can be initialized via loads of either the
MACP_LS or MACP_L registers. The former sign-extends into the upper 24 bits. The
four MACP_ SPRs are defined as write-only by the assembler. The MACP
pseudonym is similarly defined as write-only except when used as the accumulator
seed.

3.3.2. Reading from MAC
When reading from the MAC unit, one accesses the unsaturated MAC latch. Here
the programmer refers to the SPR, MACH, to access the high 24-bit word, and to the
SPR, MACL, to access the low word. Both MACH and MACL are defined by the
assembler to be read-only. It does not make sense to use MACP as a source since it is
the MAC latch, not the MACP latch, which would be read. The assembler will
disallow any reference to MACP as a source operand which is not the seed source in
the MAC unit. The pseudonym, MAC, when used as a source operand is defined as
equivalent to the SPR, MACH, by the assembler. Since when sourcing MAC one refers
to the unsaturated MAC latch, most of the time the programmer will prefer to access
intermediate MAC unit results from the Z destination buss (see the Chip Spec.), taking
advantage of the three-operand architecture.

32

3.3.3. Reading from MACRL
Low-order MAC unit results can also be obtained from another place which is right
outside the MAC unit called the MACRL latch. If the programmer does not specify a
destination other than MAC, the assembler substitutes the ZERO SPR. So, this read-
only SPR, MACRL, is loaded on every instruction cycle with conditionally saturated
low-order 24-bit results from the MAC unit output.29 The MAC unit NOP has been
designed to preserve the contents of MACRL; this SPR is not writable.

Alternatively, unsaturated low-order MAC unit results can be read directly from the
MACL register, which is part of the MAC latch.

3.4. Saturation
When an accumulator result goes to the MAC latch, it is always unsaturated. When the
MAC unit writes a result to a destination other than the MAC latch (to some GPR or
AOR, for example), then and only then will conditional saturation occur. Saturation
decisions are based upon the thirteen MSBs of the 60-bit Barrel Shifter output. (See the
Chip Spec. for more details.) There also exists a register for the special purpose of
reading conditionally saturated low-order MAC unit results: it is called MACRL.

3.5. Barrel Shifter
The MAC unit multiplies two signed 24-bit operands and produces a signed 48-bit
product and four more overflow bits. Analytically, in fixed-point (non-integer)
arithmetic, multiplying two q23 24-bit numbers would result in a q46 48-bit format;
i.e., a number having the binary point after the 46th bit counting from the LSB, and
having a redundant sign bit. But, the product in the ESP2 is always shifted left once, to
produce a q47 48-bit result in the present case. Usually, the high 24-bit word (not
including the 4 overflow (guard) bits) which is then in q23, is taken out to the destination
along the Z buss.

Beyond this permanent product shift left, a programmable 60-bit Barrel Shifter is
available in the MAC unit at every instruction cycle operating on 52 bits (which includes
the four guard bits) of either a seed source or an accumulated result. This feature allows
us to be more selective about the alignment of inputs to the accumulator or about the
accumulator bits appearing at the MAC unit output. In other words, the Barrel Shifter
facilitates fixed-point arithmetic at various binary points. Note that the binary point in
the MAC latch (as output) and the destination register can be in different locations when
the Barrel Shifter is used to shift the accumulator output to a destination. This is because
of the position of the Barrel Shifter in the MAC unit output path.

A shift may be specified to the right or left using >>n or <<n , respectively. n must
be a constant expression from 1 through 7 for right shifts, or 1 through 8 for left shifts. n
can be 0 in which case the shift operation need not be specified. We will indicate just
one direction in the remainder of the text for simplicity (n may be negative). The
placement of the shift operator determines precisely what will get shifted. Three legal
placement options are:

29This stands in contrast with the 52-bit MAC latch to which the storing of results can be
selectively inhibited.

33

1) MAC >>n + D X E > MAC, F !shifting the accumulator seed source

2) MAC + D X E > MAC >>n > F !shifting into the destination
Programmers take note that this particular instruction says that the result left in the MAC
latch is not shifted.

3) MACP + D X E >>n > F !means (MACP + D X E) >>n > F

This shifts into the destination but deposits nothing to the MAC latch!

Right shifts are sign extended while left shifts are zero filled and saturated if required;
these are double precision arithmetic shifts. Double precision logical shifts may be
performed in the ALU if need be.

3.6. MAC unit MOV Pseudo Instruction / Homogeneity
The MAC unit can easily be made to MOV data without alteration; thus there is a very
useful MOV pseudo instruction in the MAC unit having the same syntax as the MOV in
the ALU. The reader is referred to the Chip Spec.

In our discussion of Shift Pseudos, we encountered the ASH pseudo which is
homogenous in the MAC unit and the ALU. Perusal of the MAC unit pseudo instructions
in Part I will reveal a high degree of similarity with the instructions and pseudo
instructions in the ALU. This is a purposeful design feature of this assembly language
whose justification requires an understanding of the programming process in a parallel
architecture such as ESP2. Very often the programmer finds it necessary to cram the
maximum amount of functionality into a small program space. The available space is
dictated by outside constraints such as the given sample period. The optimal efficiency
of an ESP2 program comes about when the MAC unit, ALU, and AGEN unit are roughly
equalized in the number of instructions executed per sample period.30 This is more
easily accomplished when the language is homogenous among the parallel function units.

3.6.1. MAC unit XCH Macro Pseudo Instruction
Utilizing the MOV pseudo instruction in the MAC unit, and coding a reverse MOV on
the same program line in the ALU, then taking advantage of the destination latencies, one
can invent a macro pseudo instruction which exchanges the contents of two sources. Due
to inter-unit latency, the complete result of that exchange is available to the ALU on the
next queued line of code, but is available to the MAC unit on the second queued line
following the macro. (This coding is 33% more efficient, regarding number of
instructions, than having either MAC unit or ALU alone do the exchange. The reader is
referred to the Chip Spec.)

30To attain that ideal, the programmer will often play the chiclets game; popular around 1960.

34

3.7. Listing of MAC unit Instructions
Notice that every MAC unit instruction has a destination operand, F. The assembler’s
default destination F operand is the read-only ZERO SPR. This implies that for those
instructions having both MAC and F as allowable destinations, the programmer can
effectively indicate only the MAC latch as the desired destination. This yields 10
variants of the existing instructions.

Remember that when MACP is specified as the destination (F) operand, it gets single
precision results, whereas the MAC latch destination, as fed from the accumulator,
always receives double precision results. Both MAC and MACP as seed source are
double precision, however.

Also notice that the MAC latch destination and the destination register do not always
receive the same shifted results.

 TABLE MACLIST. Fundamental MAC unit Instructions.
 instruction comment
 D X E > MAC >>n > F
 -D X E > MAC >>n > F variant: -D X E > MAC

 D X E >>n > F
 -D X E >>n > F

MAC + D X E > MAC >>n > F
 MAC - D X E > MAC >>n > F
 MAC + D X E >>n > F (MAC + D X E) >>n > F

 MAC - D X E >>n > F ditto -

 MAC >>n + D X E > MAC, F
 MAC >>n - D X E > MAC, F
 MAC >>n + D X E > F
 MAC >>n - D X E > F

 MACP + D X E > MAC >>n > F
 MACP - D X E > MAC >>n > F
 MACP + D X E >>n > F (MACP + D X E) >>n > F

 MACP - D X E >>n > F ditto -

 MACP >>n + D X E > MAC, F
 MACP >>n - D X E > MAC, F
 MACP >>n + D X E > F
 MACP >>n - D X E > F

35

4. ALU
The ALU is the most conventional and general-purpose of the three function units. It
can conditionally affect the Program Counter resulting in branching and calls to
subroutines. It can execute 32 different opcodes, but the programmer’s assembly
language will contain many more instructions. Since the ALU is a three-operand device
(as is the MAC unit), flexibility in the choice of these operands admits many variants of
the fundamental ALU instructions. These variants are called pseudo instructions and
account for the excess of instructions beyond 32. The ESP2 Chip Spec. explains all the
instructions and how the pseudo instructions are constructed from the 32 fundamental
instructions.

4.1. Three Operand Instructions
Most ALU instruction have three operands, two sources, A and B, and one destination, C.
The sources are separated by commas, the destination by a > (right chevron).

 OPERATION A , B > C

Examples of instructions having three operands are:
ADD, ADDV, ADDC, SUB, SUBV, SUBB, SUBREV, MAX, MIN, AND, OR, XOR,
RECT, AVG, AMDF, LIM, AS, LS

When the destination is not supplied, the C operand will be assumed to be the same as B.

ADD this, that is short for ADD this, that > that

This particular convention is germane only to the ALU.

4.1.1. Compare
The CMP (compare) pseudo instruction is derived from the instruction SUBREV by
utilizing the read-only SPR called ZERO as the destination:

CMP this, that
The ALU will perform the following operation:

 ZERO = this - that
The programmer can think of it as ’compare this to that’. Later in the code where a
conditionally executable instruction {�} is encountered, if GT were active in the CMR, for
example, then the instruction would be read: ’if this is greater than that, then do this
conditionally executable instruction’.

36

Three SUB-class instructions (SUB, SUBB, SUBV) are reversed in operand order with
regard to the SUBREV instruction. For example,

SUB this, that > there
should be thought of as ’subtract this from that and put the result in there’. The ALU
performs the following operation:

 there = that - this

4.2. Two Operands: One Source, One Destination
Some instructions use only one source operand. The destination is separated by a right
chevron. The most common is:
 MOV B > C

The instructions, MOV, BREV, and DREV, are examples of instructions having only one
source, one destination.

For one-source instructions, when the destination is not supplied, the source will also be
interpreted as the destination.

BREV gpr is short for BREV gpr > gpr
where gpr is assigned to both the B and C operands.

Again, this convention is germane to the ALU.

4.3. Fundamental ALU Instructions Having No Operands

BIOZ instruction
The operands of the BIOZ and HOST instructions (and the ALU NOP pseudo) are usurped
because of the need to refresh internal registers transparently. BIOZ always performs at
least one refresh, while HOST performs refresh only if no host access is pending.

The purpose of the ALU’s BIOZ instruction is to conditionally suspend program
execution, but it has an execution latency of one instruction cycle. This means that two
lines of code will be executed once whenever this instruction is encountered; the
instruction line queued for execution following the BIOZ, is executed prior to suspension.
When suspension occurs, the Program Counter (PC) becomes frozen at the second
instruction line queued for execution following the BIOZ. When the PC freezes due to
BIOZ, we say that the chip is in suspension, as opposed to a halt. This is because the
suspension only lasts until a positive transition occurs (at the sample rate) at the IOZ
input pin, which is part of the synchronization interface. When the program resumes, it
begins at the second queued instruction line following BIOZ.

37

The Principle of Average Excess
Suspension is, therefore, a means of synchronizing program execution to the sample rate.
If the positive transition at the IOZ pin has already occurred by the time BIOZ is reached,
then there will be no suspension. We can use this fact to squeeze a lot more performance
out of the programs that we write.

The ESP2 synchronization interface allows the run-time of a cyclic program to
momentarily exceed the sample period so long as the average run-time is less than the
sample period.

Stated differently; The average excess time spent by the main program cycle (the main

loop) beyond the sample period must be <�0 in a sample synchronous ESP2 system.31

The caveat here is that the cumulative excess beyond the sample period can never exceed
one more sample period; not even momentarily. Otherwise the SER data SPR transfers,
latched by the transit high of the serial interface pin signal called LRCLK, will miss their
launch window. Because LRCLK is often tied to the IOZ pin, this is why we recommend
SER access towards the beginning of a program.32

The Programmer’s Scope Loop
The parallel programming paradigm

 MAC-operation ALU-operation AGEN-operation

allows the programmer to place a dummy external data-memory (AGEN unit) access on any
available program line; say, alongside some chosen MAC unit or ALU instruction deemed a
landmark to the program’s cyclic operation. By placing such an access on the same program
line as BIOZ, for example, the programmer can observe excess run-time with respect to the
sample period, as discussed above. The programmer might schedule a dummy read to
physically non-existent external memory;33 say, at $800000. Address bit 23 on pin
maddr[23] would then be asserted every time the dummy read were executed.34 That pin
would be monitored on a dual-trace oscilloscope, the second trace monitoring the signal at
pin LRCLK for the sample period. By visual comparison, the programmer would then be
able to easily discern whether the average main loop duration were less than the sample
period.35 Ordinarily, the programmer would have foreknowledge of this by design. Only
the most intricate programs might require such monitoring.

31We guise the Principle in terms of excess time to emphasize that many contemporary chip
designs do not allow such excursions beyond the sample period. Negative excess time spent is
interpreted as a main loop of average duration shorter than the sample period.
32but not on the next queued program line following BIOZ.
33The ESP2 is designed for 24-bit addressing to 16 Mega-word (24-bit) external data-memory.
34Recall that BIOZ executes once and then suspends the ESP2 if necessary; i.e., the chip is not
designed to ‘loop’ on the BIOZ instruction.
35This method of observation was invaluable during the development of a product based upon
this Principle. [Dattorro2400] The Lexicon Model 2400 was indeed designed to execute a cyclic
program whose run-time often exceeded the sample period.

38

We elaborate on this debugging technique a little:36

.

.
DEFREGION I @$800000

dummyAor = 0

DEFSPR

DIL0 ! reserve a DIL for personal use
.
.

CODE
.
.

NOP BIOZ RD *dummyAor > DIL0
.

.

The partial program above shows one way to accomplish the proposed objective which is
to assert a synchronous pulse on external data-memory address line 23. This method is
independent of the type of external memory; i.e., DRAM/SRAM. The upper address
pins, maddr[16] through maddr[23], do not multiplex (row/column) when in DRAM
mode. Therefore the observed state of an individual pin will be the same regardless of
the setting of the MUX_ADDR bit in the HARD_CONF SPR.

If all legitimate accesses to external data-memory are to regions where the maddr[23]
pin is logical 0, then the dummy access will place a logical 1 (+5V) on the pin for one
instruction cycle. If any AGEN NOP cycles immediately follow in the program, the pin
will remain high until the next scheduled external memory cycle, because the external
memory address pins tristate on NOP cycles. It is prudent, then, to attach a pull-down
resistor to that pin so that the line is pulled low at tristate. The pull-down resistor will
typically cause slower (more rounded) transitions, thereby allowing one to distinguish
pin-driven transitions from pin tristate transitions.

If this feature is desired within a development environment, the system designer has the
option of placing pull-down or pull-up resistors on the busses that tristate.

Since BIOZ is an ALU instruction, scheduling an external memory operation on the same
program line will cause the external memory buss cycle to straddle the second half of the
BIOZ and the first half of the instruction cycle following BIOZ.

HOST instruction
The BIOZ instruction includes within it another ALU instruction called HOST. HOST is
itself an independent fundamental ESP2 instruction synchronizing run-time host access,
to/from any one internal 24-bit register, using the standard host/ESP2-register interface.
(Instruction memory is always accessible at the instruction rate, and internal register
memory is accessible at the instruction rate during halt.) If multiple HOST instructions
are executed (as in the BIOZ instruction during suspension), then it becomes possible, for
example, to update all the coefficients of an IIR (infinite impulse response) filter at
once, at the instruction rate, at run-time.

36The reader may first want to review the section covering AGEN unit programming before delving
further into this scheme. Familiarity with the hardware configuration register (HARD_CONF from
the Chip Spec.) and its control over the external data-memory interface would be helpful.

39

In the event that an ESP2 program is written without the use of the BIOZ instruction, the
programmer must remember to include at least one HOST instruction somewhere in the
program for internal register access at run-time from the system host. Since BIOZ executes
the HOST instruction only during suspension, if the number of instructions in every program
main loop equals or exceeds the sample period, then BIOZ will not allow host interaction.

4.4. Branching, Moving, and Pseudo Instructions
It is very important to distinguish fundamental ESP2 instructions from pseudo instructions
which are formulated within the assembler as source/destination variations of the
fundamental instructions. There are 32 ALU and 20 MAC unit fundamental instructions
while the number of useful variations and pseudo instructions number much more.

4.4.1. MOV Pseudo Instruction
There exist two MOV instructions in the ALU: MOV and MOVcc. MOV does not alter
the CMR, while MOVcc always preloads it. In either MOV, the B operand always goes
to the destination register specified by the C operand, as in

 MOV B > C

All the cc-class instructions utilize the A operand field and a special reduced-latency data
path to make the unconditional preload of the CMR. So, strictly speaking, the following
cc-class MOV instructions are pseudo instructions because the arrangement of operands
does not correspond to the instruction primitive:

unconditional move with unconditional preload of CMR:
 MOV B > C, cc > CMR

conditional move (based on new CMR) with unconditional preload of CMR:
{MOV B > C, cc > CMR}

where cc can be: EQ, NEQ, GT, LT, GTE, LTE, HI, LO, HS, LS, POS, APOS, BPOS,
NEG, ANEG, BNEG, OV, NV, CC, CS, ALW, NEV, IOZ, NIOZ, IFLG, NIFLG, Z, NZ
(note: CS = LO, CC = HS, Z (the zero Condition) = EQ, NZ = NEQ).

When the programmer does not specify a load to CMR, the assembler will utilize the
MOV instruction instead of MOVcc. This is necessary so as to avoid modifying the
CMR unintentionally with this ubiquitous instruction.

It is interesting to note at this point that none of the fundamental cc-class instructions
(Jcc, JScc, RScc, MOVcc) are themselves recognized by the assembler; only the pseudos
presented herein are recognized.37

37The MAC unit has a MOV pseudo instruction having the same syntax as MOV in the ALU.

40

4.4.2. JMP class Pseudo Instruction
In the ESP2, the branching instructions are three operand ALU cc-class instructions. The
JMP class (Jcc, JScc, RScc) instruction operands are arranged as follows:

 Jcc Condition, label > ZERO ! = Jcc A, B > C ;syntax not used

The destination register, the read-only SPR ZERO, is supplied by the assembler in the
cases of Jcc and JScc. In actuality, the destination could be any register. Were the
assembler to assign some other register as the destination, then the contents of a register,
whose address is the same as the value of label, would be written to the assigned
destination. Since it would be of little utility to load some other destination register, the
destination ZERO is the most logical choice. The reason that this move to ZERO
happens is because the new PC location denoted by label is assembled into the B
operand field of the microinstruction 96-bit word. Although the B field is not a GPR
address, a MOV of the B operand to the C operand occurs along the normal ALU data
path by design. Most ESP2 instructions act this way.

The B operand field, holding the value label, is forced into the PC along a special
reduced-latency data path if the branch is taken. This special path provides a quicker
update of the PC. There are, so far, two destinations: the ZERO register and the PC.

The Condition is hard-coded into the A operand field of the microinstruction by the
assembler, and always gets moved into the CMR prior to any decision to branch; this, in
fact, makes a third destination! The CMR is unconditionally preloaded by a cc-class
instruction whether or not conditionally executed.

The skip bit is discussed in the section on Conditional Execution. Any instruction field
can be conditionally executed if the current Condition Code, the CCR set only by the
ALU, satisfies the CMR, and if the skip bit associated with that instruction field is
asserted by the programmer. Branch instructions constitute special moves to the SPR
called PC. Since any instruction can be conditionally executed, then in this manner we
accomplish conditional branching.

The programmer does not use the syntax above because the JMP class instructions
are difficult to interpret. The syntaxes shown below are more explicit, indicating first
where the branch is to, and then indicating that there is a preload of the SPR called CMR
(Condition Mask Register) on the same program line. The CMR is then used
immediately in a decision {} to branch.

Since there is no primitive instruction corresponding to the arrangement of operands as
shown below, these branch instructions, strictly speaking, are pseudo instructions because
their operands must be rearranged by the assembler into the format specified above
(in�Jcc):

41

JMP Pseudo Instructions:
unconditional branch:

 JMP label
 JMP label, cc > CMR !Jcc having skip bit not asserted.

 {JMP label, ALW > CMR} !skip bit asserted
conditional branch (based on unconditionally preloaded new CMR):

{JMP label, cc > CMR} ! meaning: branch if Condition (cc) is true

unconditional branch to subroutine:
 JS label
 JS label, cc > CMR ! JScc having skip bit not asserted

conditional branch to subroutine:
{JS label, cc > CMR} ! unconditional preload of CMR

unconditional return from subroutine:
 RS
 RS, cc > CMR ! Note use of comma for preload to CMR.

conditional return from subroutine:
{RS, cc > CMR} ! unconditional preload of CMR

If the skip bit is not set by the programmer, then all JMP class instructions will be
unconditional regardless of the particular Condition sent to the CMR.
Whether or not the skip bit is set in the ALU, there will always be a preload of the
CMR by the JMP class instructions. If the programmer does not specify a preload
of the CMR, the assembler will choose the ALW (always) Condition.

The line of code queued for execution following Jcc, JScc, and RScc will always be
executed; i.e., these instructions have an execution latency of one instruction cycle.

All JMP class instructions (Jcc, JScc, RScc) and REPT always leap all three function unit
parallel instructions. The programmer must be cognizant of any AGEN instructions
scheduled by the assembler appearing on any instruction lines surrounding the
branch (see the .agn listing), because they may be unintentionally missed or
erroneously executed.

In general, MOV to the PC along the normal ALU data path is ill-advised.

42

4.5. Low-Overhead Looping
The ALU REPT instruction is a three operand instruction, having extra destinations,
designed to provide an efficient looping mechanism. The label whose value is the PC
location of the last instruction in the block, always gets coded into the A operand field; it
is not the address of a GPR, so no GPR must be allocated to hold that value. The second
operand or operand field is the repeat count, the number of times a block of code will be
repeated. This means that the number of loops is always 1 more than the repeat count,
and the block of code following REPT will always be executed at least once.

first_form: NOP REPT last_instruction, NUM_REPEATS
loop_start: somegpr X result > somewhere
last_instruction: somegpr X someother > someother

The destination operand, if not specified, is supplied by the assembler as ZERO. When
specified as in this example, the constant expression, NUM_REPEATS, gets coded into
the B operand field of the instruction and determines the number of repeats. Therefore no
GPR must be allocated by the assembler to hold that value.

When the B operand field holds the number of repeats, the expected constant value has a
maximum of 1023 since it is a 10-bit field. This means that looping more than 1024
times must use a second form of the instruction. When the destination (the SPR called)
REPT_CNT is specified, then the contents of the GPR named in the B operand
determines the number of repeats;

second_form: NOP REPT last_instruction, repeat_count > REPT_CNT

 :
The user-named GPR called repeat_count holds the number of repeats, which has a
maximum of 224 - 1, and is moved to REPT_CNT along the normal ALU data path. No
other destinations are allowed by the assembler.

This interpretation of the operands is dictated by the elegant REPT microinstruction
which first loads the B operand field into the SPR REPT_CNT, and then loads the
register contents pointed to by the B operand field (the B operand) into the destination
denoted by the C operand. If the destination operand is specified as REPT_CNT, then it
gets loaded twice in succession!

There are some special rules that must be observed by both the programmer and the
assembler regarding successful implementation of one-line loops. For a more thorough
description of the REPT instruction, see the Chip Spec.

The repeated block of code covers all three function units. The programmer must be
aware of any AGEN instructions scheduled by the assembler appearing on any
program line in the block (see the .agn listing), because they will be repeated too. If
a delayspec appears in the block but it is scheduled outside the block, the block may
need to be extended.

43

5. AGEN
The purpose of the AGEN is to read and write external data-memory. The AGEN utilizes
the G operand, which is always of type AOR, to calculate a new external memory address
on every instruction cycle. The fundamental AGEN address calculations are subject to
modulo arithmetic by design, but AGEN easily adapts to addressing in absolute or
relative fashion.

While the AGEN has several powerful modes of address calculation, the programmer is
free to employ GPRs or AORs to perform more intensive address computations in either
the MAC unit or the ALU. Both the instruction set and the language syntax support
programmed address computations. The final result of an address computation must
ultimately reside in an AOR.

An external memory array (delayline, peripheral I/O, table) must reside in some region.
A region is typically a circular buffer in absolute address space having associated with it
BASEr, SIZEM1r, and ENDr region control registers. The region control registers,
mapped as SPRs, serve to bound the region for automatic modulo addressing with respect
to the region modulus.38 That external memory array must be associated with one of the
eight hardware-supported regions in the chip (which are named I, P, Q, R, S, T, U, and V)
by declaring it so in a DEFREGION statement.

The address generator (AGEN) operations can be specified by the programmer in two
ways:
1)by writing AGEN code directly on a program line in the AGEN instruction field, or
2)by the use of external memory references as sources or destinations of the ALU or
MAC unit.

In the first case, the programmer is assisting in the automatic scheduling functions built
into the assembler. In the latter case, (called ’AGEN coding in the MAC unit or ALU
instruction field’) the assembler will automatically generate and schedule the appropriate
AGEN code for the programmer which will appear in the AGEN� listing (.agn).

Whenever AGEN code is generated, either by the programmer or the assembler, this is
called scheduling.

38The size of the region is arbitrary.

44

5.1. AGEN Scheduling
Let delayspec represent any external address offset expression, yet to be defined. The
assembler must resolve all the delayspecs appearing in the MAC unit and ALU
instructions fields by scheduling the requested AGEN operations on external memory, if
required.39 More accurately, each delayspec specifies an address offset into external
memory. These offsets must be held in AORs which either the assembler or the
programmer can allocate and initialize. The process called scheduling determines the
access sequence of each delayspec requesting access to external memory; both the
assembler and programmer may take part in the generation of the required AGEN code.
More than one access may be requested on each line of code. Only one access per line of
code can be scheduled, however, indirecting the assigned AOR to RD external memory
contents into an SPR called DIL, or to WR the contents of an SPR called DOL out to
external memory. The DIL or DOL then replaces the programmer’s reference to the
requesting delayspec in the MAC unit or ALU instruction field after assembly. This
action is seen in the AGEN listing.

The assembler will not wrap schedules it generates beyond user-defined program
boundaries. Scheduling is always performed on program lines contiguous with the
requesting delayspec. The assembler will complain if insufficient program space at the
top or bottom prevents scheduling. The program boundaries are determined primarily
from the existing lines of source code.

5.1.1. Meaning of delayspec
A chart of delayspec syntax is given later, and we will see that delayspec has many forms.
The purpose of using a delayspec as an operand might be to access data residing off-chip
in a large external memory. In other uses of delayspec, an external address offset may be
in the process of being computed by the program, requiring no external access for the
time being; i.e., just an AOR reference. The most common delayspec looks like an array
reference in the C programming language. For example:

DEFREGION Q[$10000] @256
mydelay[3032]
mypointer = &mydelay[1]

CODE
NOP NOP RD mydelay[123] > DILn

In our example, mydelay is the name of a delayline (type of external memory array)
declared to reside in a specific region (Q) of an optionally specified size ($10000), which
is in turn declared or determined by the assembler to start at a specific absolute location
in external physical memory (256). This particular delayspec

 mydelay[123]� =� *(&mydelay[123])
is requesting an external memory access to a certain element of the delayline in region Q.
The delayline must have been previously declared while the delayspec need not have
been. The name itself, mydelay (defined equivalent to the delayspec &mydelay[0] as
in the C programming language), connotes the relative address offset of the beginning

39Not all delayspecs demand external memory access. A delayspec can be an AOR reference,
for example, hence no schedule is required. The delayspec Quote Scheme conserves external
memory bandwidth by eliminating redundant accesses.

45

(the�root) of that delayline with respect to the physical start of the associated region. The
index in the square brackets is expected to be a constant-expression and is usually meant
to be the time delay in units of number-of-samples.

In the coding example given above, when mydelay[123] is encountered, the quantity,
 address offset = root address offset of mydelay[3032], + 123
 = &mydelay[0] + 123

 = 123
is evaluated by the assembler.40 The assembler must then allocate an Address Offset
Register (AOR) implicitly associated with region Q by default, and initialize it to hold
that quantity.

The delayspec in our example above, then, causes an AOR to be initialized and used by
the AGEN unit to fetch the desired word of external memory data. The AGEN deposits
that data into some DIL. The contents of that DIL will, most likely, later be used by the
program. These are the actions and meaning of the delayspec.

Another useful form of delayspec utilizes an explicit reference to an AOR. For example:
CODE
NOP NOP RD *mypointer > DILn

This delayspec requests an external memory access (* as in C programming). From the
declarations above we see that *mypointer = *&mydelay[1] which we will find to be the
same as mydelay[1]. So, in this second manner we can make reference to an element of
a previously declared delayline. Unlike the case for the array form of delayspec,
mydelay[123], the AOR mypointer must have been declared. The region with which it
becomes associated by default is determined by the region in which it is declared.

40The value of the delayline name itself, mydelay, (i.e.,�the value extracted using #mydelay or
#&mydelay[0]) is actually the register address of the AOR holding &mydelay[0] (the root
address offset) in the same region as the delayline. How such an AOR comes into existence is the
topic of more discussion. In any case, #mydelay[0] also yields the root.

46

5.1.2. Root Address Offset of an External Memory Array
Our earlier definition of root rightly expresses it as the relative delayline beginning,
with respect to the start of the region. This is because the assembler determines it. When
the assembler performs the initialization of the region control registers, BASEr begins
life pointing to the start of the region in physical memory. At that time, when all the
delayline (or table, or peripheral I/O) roots are being determined, the root has two identical
derivations: as with respect to the physical region start, or with respect to the region
BASE.

If the programmer overrides the region BASE initialization in a DEFSPR, the assembler
will still determine roots with respect to the physical region start. More generally,
programmer override of region BASE, SIZEM1, and END initialization is not observed
by the assembler in its determination of AOR assignments.

It will become desirable to move BASEr around the region as discussed in the section
called UPDATE region BASE. As BASE moves under program control, we consider it
the new start of the region modulus (a circular buffer). Under this circumstance it is
preferable to refine our definition of root to mean with respect to the region BASE. We
can do this because all AGEN address calculations add offsets held in AORs to region
BASE register contents to derive an absolute address. In any case, the value of the root is
the same using either interpretation.

47

5.2 AGEN Instruction Field Coding
The AGEN field is optional for the programmer, and must be placed after the ALU
operation on a program line. This code is typically generated (and scheduled) by the
assembler in response to delayspecs found in the MAC unit and ALU instruction fields.
The programmer who requires a more direct view of the scheduling for a piece of source
code having intricate branching would be found typing code into the AGEN instruction
field.41 When the programmer performs the scheduling by typing AGEN code directly,
we call this programmer assisted scheduling. The AGEN scheduler is sophisticated,
however, and the programmer will find it difficult to exceed its efficiency.

The AGEN uses 16 Data Input Latches (DILn�=�DIL0,�DIL1,�...,�DILF) and 16 Data
Output Latches (DOLn�=�DOL0,�DOL1,�...,�DOLF) as 24-bit data buffers. These SPRs
are the repository of incoming or outgoing data from/to external memory. Each one of
these SPRs can be reused during the course of an ESP2 program, and so there is no limit
imposed by the Data Latch resource upon the number of external memory accesses per
sample period. There is a limit, imposed by other hardware constraints, of one external
memory access per line of ESP2 code. (This does not prevent the programmer, however,
from requesting multiple accesses in the various fields of the same program line.)

This is how AGEN code might appear in the AGEN instruction field:
The read syntax in the AGEN field is

 RD delayspec > DILn
whereas the write syntax is

 WR DOLn > delayspec

5.2.3. DIL/DOL Reservation
Should the programmer wish to reserve any of the DILs or DOLs for private use, the act
of declaring them within DEFSPR has the desired effect. The assembler then
relinquishes those particular resources during scheduling.

If the programmer chooses to specify the DIL/DOL in the AGEN instruction field
without having first reserved it in the declarations, the outcome can be unpredictable.
This is because the assembler will consider all unreserved DIL/DOL SPRs as an available
resource during scheduling.

41The AGEN listing shows all the AGEN code generated by the assembler and the programmer.
Keep in mind that the AGEN listing (.agn) assembler output can be modified by the programmer
and reassembled.

48

5.3. AGEN Coding in the MAC unit or ALU Instruction Field
This type of AGEN coding occurs when a delayspec is used as a source or destination in
the MAC unit or ALU instruction fields of a program line. We are discussing AGEN
programming which does not appear in the AGEN instruction field. For example:

CODE
NOP ADD coef1, coef2 > delayspec

An Address Offset Register would be allocated if this delayspec were not as yet
encountered. If delayspec is requesting an external memory write, then this instruction
would also cause the assembler to allocate the next available DOLn. The result of the
ALU addition would then be placed into that DOL. On the following program line or any
line thereafter, the AGEN could be scheduled to WR from DOLn to external memory as
addressed by delayspec; this action would be seen in the AGEN listing.

In other words, delayspec, as specified by the programmer, comprises an address offset
into a particular region of absolute memory. That region is also denoted42 by delayspec
and hard-coded as part of the instruction word which would perform the actual WR to
external memory. Some AOR, typically determined by the assembler, is allocated to hold
that offset into the specified region.43 If an external memory access is requested by
delayspec, then the AGEN uses that Offset Register operand to indirect the access. The
DOLn SPR which then replaces delayspec as the ALU destination, would hold the write-
data used in that access.

In the case that there is an external memory access request, if we were to examine the
.agn listing produced by the assembler, we would find some AGEN dereference of that
Address Offset Register which was allocated to delayspec in the assembly of our one-line
program above. That dereference would of course reside on some line of code following
the ADD, in the AGEN instruction field where the external memory access is scheduled.
This latency is, in fact, the reason for the existence of multiple DOL SPRs; a multiplicity
of writes to external memory can be queued-up if necessary, to occur at some later more
opportune time.

The situation for external memory reads is quite similar. For example,

NOP ADD coef, delayspec > destreg

If delayspec is requesting an external memory access, then a DILn is allocated. Here the
assembler recognizes delayspec as an external memory reference and (if not already) an
Address Offset Register is typically allocated. That AOR holds an address offset44 into
the region r in absolute memory. The particular region and AOR content become
known either through the declaration of delayspec, or through the appearance of
delayspec in the code alone.

42perhaps implicit by association with the region via declaration,
43The programmer also has the means to explicitly declare, allocate, initialize, and name that
associated Address Offset Register, by the way.
44with respect to the corresponding region BASEr register,

49

At some time at least two lines prior to this program line, the assembler needs to have
scheduled (generated AGEN instructions to perform) a RD from external memory to that
allocated DILn. That scheduled AGEN code employs the region and AOR denoted by
delayspec. Since the word of data read from external memory has been deposited into the
assigned DIL ahead of time, our line of code would be assembled substituting that DIL
SPR in place of delayspec.

5.3.1. Example: AGEN Coding in the MAC unit Instruction Field
The following program lines show AGEN coding in the MAC unit field. The particular
form of delayspec used is an explicit AOR dereference:

DEFREGION T @regionTstart
 sinctable[1024]
 sigmoidtable[1024]
 tablejump = 2
DEFREGION S @regionSstart
 sinc2table[1024]
 sigmoid2table[1024]

CODE
NOP ADDV &sigmoidtable[0], #regionTstart > BASET
NOP ADDV &sigmoid2table[0], #regionSstart > BASES
NOP !wait for BASET to get to AGEN, the first read should get scheduled here.
NOP
*tablejump X coef1 > MAC !tablejump connotes region T.
*(tablejump)T X coef2 > MAC
*(tablejump)S X coef3 > MAC !region-S override.

The following shows another way of doing exactly the same thing, but this time by
coding directly in the AGEN instruction field:

DEFSPR DIL0 !reserve DIL0

CODE
NOP ADDV &sigmoidtable[0], #regionTstart > BASET
NOP ADDV &sigmoid2table[0], #regionSstart > BASES
NOP NOP RD *(tablejump)T > DIL0
NOP NOP RD *(tablejump)T > DIL0
DIL0 X coef1 > MAC NOP RD *(tablejump)S > DIL0
DIL0 X coef2 > MAC
DIL0 X coef3 > MAC

!But the CODE is identical to the AGEN listing (.agn) of the first way!

50

5.4. AGEN Listing (.agn)
The assembler produces a special listing of the programmer’s original source code, but
having appended in the AGEN instruction field the assembler-generated, assembler-
scheduled AGEN instructions. This AGEN code consists of references to AORs as
pointers to external memory, and references to DIL SPRs and DOL SPRs acting as
repositories of external memory data. In place of the programmer’s delayspecs in the
MAC unit and ALU fields would appear the DILs and DOLs assigned and allocated by
the assembler.

The AGEN listing can itself be assembled! Were we to reassemble this AGEN listing, an
identical listing would be generated. See the Applications section for an example.

5.5. DIL/DOL Conservation; The delayspec Quote Scheme
The assembler will observe attempts by the programmer to assist in the scheduling if the
conventions outlined here are followed:
We need a way to inform the assembler that programmer code is specifically written so as
to inhibit the scheduling of some delayspec which appears as an operand in the MAC unit
or ALU instruction fields. We adopt the convention that
 "delayspec"
(in quotes in the code) appearing in only the MAC unit or ALU fields, specifies the same
DIL/DOL as did the first previous reference to the same unquoted delayspec to the left or
above in any instruction field.

If the first previous reference in the source code resides in a MAC unit or ALU field then
we have accomplished DIL/DOL conservation. By conservation we mean that the
number of external memory accesses has been reduced by reusing the contents of a
previously loaded DIL/DOL. Since under these circumstances the assembler chooses the
particular DIL/DOL used by the AGEN, then in this case it is up to the assembler to
preserve the contents of that DIL or DOL for all occurrences of "delayspec" following
delayspec.

Conservation can become critical during intensive external memory access where it is
desired to reduce the required external memory bandwidth.

If the first previous reference in the source code to the same unquoted delayspec resides
in the AGEN instruction field, then we have programmer-assisted scheduling. Actually,
programmer assisted scheduling results whenever the programmer types code directly
into the AGEN instruction field. The programmer must reserve the DIL/DOL used (via
DEFSPR) in order to be absolutely sure that it is not trashed by a subsequent assembler
schedule.

In either case, when the "delayspec" is encountered, the assembler inhibits a schedule
for it. An assembly error is generated if there is no previous unquoted reference.

51

We refrain from dichotomizing between the treatment of delayspecs associated with RD
operations and delayspecs associated with WR operations within our search pattern (to
the left or above). We do this because of a Reverb-type instruction sequence which is
often useful:

 coef X signal > MAC, delay[0]
MAC + coef2 X signal2 > MAC
MAC - coef3 X "delay[0]" > delay2[100]

Since the delayspec, delay[0], connotes a specific DOL, say DOLn, then after assembly
DOLn replaces delay[0] as the F operand in the first line of code and is reused in the
third line of code in place of "delay[0]". This instruction sequence conserves external
memory bandwidth and also preserves an intermediate result45 in a conditionally
saturated 24-bit destination, DOLn. In this particular case the quotes also prevent an
erroneous external memory access of a location which has not yet been written with the
desired contents.

45Recall that reference to the MAC latch as one of the multiplier operands (D or E), would call
for the unsaturated MAC latch.

52

5.6. AGEN delayspec Syntax

DEFCONST
 N = 256
 RADIX = 4
 n = INT(LOG(N)/LOG(RADIX))
DEFREGION T

d[N]
dp = &d[n] @$2a3 !dp is an AOR assigned to hold address offset of d[n]

Given these prototype declarations we establish the following generally applicable chart
of delayspec, where each individual column holds equivalent syntax:

-- AGEN Syntax ---
| |
| |

--- delayspec chart ----------------------------------
--MAC unit scope ---
---ALU scope --
-----------------------AGEN scope --------------------
column: 1 2 3 4
External memory contents External memory address offset AOR address
(AOR indirection) (in AOR) (in GPR) (in GPR)

 d[n] &d[n] #d[n] #&d[n]
 &d[n] - #&d[n] -

*dp dp - #dp
--

------------------------------------- equivalences --
 d = &d[0] (Note 1)
 &d[n] = (&d[n])
 dp = (dp)

 *& cancel each other (Note 2)

 [�] ≠ [0] (Note 3)

------ optional explicit region specifier and/or Plus-One addressing mode ----------
 d[n(+)]r (Note 4)
 *&d[n(+)]r
 *(dp(+))r ! r requires parenthesis
| |

53

Note 1: delayspec chart simplification for case of root of external memory array.

--MAC unit scope ---

---ALU scope --

-----------------------AGEN scope --------------------

column: 1 2 3 4

External memory contents External memory address offset AOR address

(AOR indirection) (in AOR) (in GPR) (in GPR)

d[0] &d[0] #d[0] #&d[0]

 &d[0] - #&d[0] -

 *d d #*d #d

Note 2: The delayspec *(&d[n]) finds use in the AGEN instructions,

 RD/WR then UPDATE (discussed under UPDATE region BASE).

 When * or & follow # in an operand field, the delayspec chart indicates the precise

 meaning. Therefore, the following two lines of code are identical:

 NOP ADDV #10173 + d[n], lfo > dpointer

 NOP ADDV #10173 + *&d[n], lfo > dpointer

 Since the delayspec #*&d[n] is verbose, its equivalent form #d[n] is most often used

 instead. Since d = &d[0]�, however, the delayspec #*d is more efficient for

 determining the root of a delayline in a DEFGPR, DEFCONST, or DEFSPR.

Note 3: d[�] is distinguished from d[0] by the assembler; these two delayspecs are not

 equivalent. Occurrences of each in the code connotes a separate Address Offset Register.

 d[�] would be found in computed addressing schemes, hence the associated AOR requires no

 initialization. (The same holds for: &d[�] , *&d[�]�)

Note 4: delayspec may optionally have an explicit region reference,

 r = I,P,Q,R,S,T,U, or V .

 The Plus-One addressing mode hardware feature is discussed later.

54

delayspec Chart Interpretation
In the declarations:
All columns are available for use in DEFREGION, DEFSPR, DEFGPR, and
DEFCONST, subject to interpretation:

column 1)Referencing column 1 would be an error because the contents of external
memory are generally not known at time of assembly; e.g.,
DEFGPR
 gpr1 = d[100] !error
 gpr2 = *dp !error

column 2)Referencing column 2 presumes the existence of a previously allocated AOR.
Row 1 (in column 2) presumes existence in the same region as the delayspec, but row 1
can always be used in the assignment to an AOR under any DEFREGION; e.g.,
DEFGPR
 gpr3 = &d[100] !error, no AOR was allocated.
 gpr4 = &d[n] !ok, gets contents of AOR, dp.
 gpr5 = dp !ok, ditto
DEFREGION r
 aor1 = &d[107] !ok, gets address offset.

column 3)Referencing column 3 does not presume the existence of a previously allocated
AOR. Neither is an AOR is allocated; e.g.,
DEFGPR
 gpr6 = #d[100] !ok, gets address offset of d[100].
 gpr7 = #*d !ok, gets address offset of d[0].

column 4)Referencing column 4 does indeed presume the existence of a previously
allocated AOR, whose register address is desired. Row 1 (in column 4) presumes
existence in the same region as the delayspec; e.g.,
DEFGPR
 gpr8 = #&d[99] !error, no AOR was allocated.
 gpr9 = #&d[n] !ok, gets register address of AOR, dp.
 gpr10 = #dp !ok, ditto

When & or # are employed in the declarations, their appearance alone does not cause allocation of

registers. Under DEFREGION, & has like meaning to #��; i.e., to extract the value of the external

memory-array symbols following. Elsewhere, & refers to existing AORs. Refer to the delayspec chart for

the specific meanings.

55

delayspec Chart Interpretation
In the code:

column 1)The first column indirects an AOR via the AGEN unit to acquire the content of
external memory in a specified region. All rows except row 3 (in column 1) cause
allocation and initialization of an AOR if not yet allocated in the associated region.

column 2)The second column is a direct reference to an existing AOR which holds an
external memory address offset. But row 1 (in column 2) causes allocation and
initialization of an AOR if not yet allocated in the associated region.

column 3)The third column is a direct reference to a GPR which holds an external
memory address offset. All rows (in column 3) cause allocation and initialization of a
GPR if not yet allocated. No pre-existing AOR is presumed, no AOR is allocated.

column 4)The fourth column is a direct reference to a GPR which holds a pre-existing
AOR address. All rows (in column 4) cause allocation and initialization of a GPR if not
yet allocated. No AOR is allocated.

AOR Allocation
In the code, any reference to one from the delayspec set: d[n], &d[n], or *&d[n],
will cause allocation of the same AOR, allocation occurring only once. Once allocated,
reference to the set calls out an existing AOR. But if an AOR assignment of identical
initialized contents, in the same region, pre-exists in the declarations, then no new
allocation will occur.
In an assignment within DEFREGION the &, as in &d[n], indicates that an address
offset is desired, while in the code &d[n] would require the contents of the associated
Address Offset Register. Since that AOR contains the required address offset, the
meaning to the programmer is the same in both cases.

GPR Allocation
As before, # must always appear as the first character in all syntax involving its use.
In general, the appearance of # indicates that it is the value of the symbols following
(i.e., the argument of #) that is desired. But in the code, # also allocates a GPR
initialized to the extracted value. An allocation will occur if reference was not previously
made in the code to the same-valued argument. If allocation has previously occurred,
then # will refer to that GPR. Unlike the case for pre-existing AORs, the assembler will
not substitute SPRs or declared GPRs of the same initialized value.

56

Value (extracted by #) Summary:

-The value of a number is the number itself.

-The value of a label is the same as the Program Counter (PC) value when it hits the
corresponding line of code. In the declarations, an assignment to #label would be the
same as the assignment to label .

-The value of a register name is its register address.

-The value of an external memory-array name is the register address of an AOR.

-The value of an indexed external memory-array is the (relative) address offset of the
array at that index. For example, #d[0] is equal to the root of the external memory array
d[N]�.

5.7. Referencing an AOR by its Initialized Contents
We will adopt the convention that in the code &myline[118] is a direct reference to that
Offset Register, in the same region as the delayline called myline, assigned to hold the
relative address offset of the delayline at index 118. If &myline[118] appears in an
assignment to an AOR in the declarations like so,

DEFREGION S
 myline[N]
 some_aor = &myline[118]
 relayer[1000]
 rpointer = &relayer[335]

then the & calls out the value of the root address offset ascribed to myline[N] by the
assembler, plus 118. Since the root is a relative address offset of the beginning of an
external memory array with respect to the physical start of the region, S in this case, it is
independent of the absolute address in BASES.

When &myline[118] appears in the code, it is a direct reference to some_aor. If there
were another delayspec appearing in our code like so: myline[127], this would need a
separate AOR allocated in the same region, and initialized to hold its address offset. That
allocation would normally be performed by the assembler when myline[127] (or the
delayspec &myline[127] or *&myline[127]) were first encountered in the code.

Hence, both the register contents and the associated region serve to uniquely specify
an AOR. These two factors thereby make it possible to reference an AOR by its contents
alone.

57

5.7.1. Example: Referencing an AOR by Contents

 *(rpointer) X coef1 > MAC

It is important to note that in this code, rpointer must be an AOR because the asterisk
denotes an external memory reference. But, any legal reference to an AOR could, in
principle, be used. Another valid delayspec might be:
 *(&relayer[335]) X coef1 > MAC

Since &relayer[335] identifies the Address Offset Register called rpointer, the two lines
of code above are identical.46 It is equally important to note that the validity of this
latter line of code is not dependent upon the declaration of rpointer. Had rpointer not
been declared, a new AOR would have been allocated in the same region when
relayer[335] (or &relayer[335], or *&relayer[335]) were first encountered in the code.

The code above is, of course, also equivalent to:
 relayer[335] X coef1 > MAC

5.8. Individual Table or Delayline size
The size of any delayline is always one plus its declared size. This assembler convention
is adopted so that delayline[0], acting as the delayline input buffer, can be written to at
any time during one sample period of a running program. If we consider delayline[1] as
the first sample in a delayline for the current sample period, then we need never worry
that perhaps it was written by some previously executed line of code; since it will not
change contents mid-period we can rely on the original contents being there. In this
manner, delayline[0] acts as a buffer to the delayline input, while the one-sample-period
latency is tolerated. Of course, this convention need not be followed. The programmer
must simply be aware that the assembler is augmenting the requested delayline sizes.47

Since the physical address increases with increasing delayline indices, it is apparent that
the programmer needs to decrement the associated region BASEr SPR once per sample
period. This function is not automatically supplied by the hardware, nor is it desirable to
be as such. When the decrement occurs, delayline[1] becomes the previous sample
period’s delayline[0]. (The AGEN’s UPDATE instruction is useful for accomplishing the
decrement, discussed under UPDATE region BASE.)

Since we do not differentiate tables and delaylines in the declarations, then declared table
sizes also become augmented by 1 during assembly. This assembler convention can also
be interpreted as the simultaneous support of the two most common ranges of index:
0...N-1 and 1...N . Tables should be placed in a different region by the programmer,
because the BASEr SPR is usually fixed for table access.

46This differs from the assembler handling of GPRs, where constant GPRs allocated by first
discovery in the code are not resolved with SPRs or declared GPRs of identical content.
47This has never been a problem.

58

5.9. Computed Addresses

5.9.1. AOR used in Delayline Access
The next most common delayspec is for a computed address into a delayline during
program execution.

DEFGPR lfo coef1 coef2 output input
DEFREGION S chorus[1000]
CODE

 .
 .

 MOV input > chorus[0] ! MAC unit MOV
 .

The modulating address offset is computed and written to an (undeclared) AOR,
&chorus[�], whose name is derived from the declared delayline (to be interpolated),
chorus[1000], and so is associated with the same region by default.

 .
NOP ADDV &chorus[100], lfo > &chorus[�] !this is address computation

 .
In this case, the AOR (the delayspec, &chorus[100], obviously allocated by the assembler
in this circumstance) which contains the address offset of chorus[100], is added to a
bipolar low frequency oscillator output and then written to the AOR called &chorus[�] .
The name of the latter Offset Register could then be used in a statement to interpolate the
delayline like so:
 .
 .

 *&chorus[�] X coef1 > MAC ! external memory requests.
MAC + *&chorus[(+)] X coef2 > output ! (+) see Plus-One Addressing Mode

where coef1 and coef2 are derived from the fractional portion of lfo (not shown).

This C-like notation indicates that the delayspec, &chorus[�], is a computed external
memory address offset with respect to BASES, while the AGEN indirects two accesses *
to external memory via the AOR, &chorus[�], which are scheduled by the assembler.

In this simplified example we do not show the circular movement of the region BASE in
a modulo fashion, although this is covered in the section, UPDATE region BASE. See
the ESP2 Applications section for real examples of interpolation.

59

5.9.2. External Memory Latency
Examination of the Instruction Cycle Timing diagram in the Chip Spec. reveals that
external memory access lags the AGEN instruction requesting that access. This fact
explains the following latencies:

In the case of an external memory read, the contents of DILn first become available as
sources to the MAC unit and ALU two program lines following the AGEN code.
In the case of an external memory write, the ALU must deposit its data into DOLn at
least one program line prior to the AGEN code which sources that DOLn, but the MAC
unit can write to DOLn as late as the same program line!

These latencies are illustrated in the section on Pipeline. Recognize that these latencies
are the minimum latencies; i.e., if the traffic to/from external memory is light, then the
automatic scheduling will achieve optimum performance. As soon as the number of
memory accesses exceeds one per program line, then the scheduling may bottleneck and
the minimum latencies may not be achieved. For this reason the delayspec Quote
Scheme syntax has been provided to minimize the traffic, while the AGEN listing has
been provided for the programmer to peruse post-assembly.

5.9.3. Inter-Unit Latency
The question naturally arises at this point regarding how many lines of code must exist
between an external memory reference and its computed address, so that the reference
uses the current address. In our circumstance above where an external memory read is
requested by the MAC unit, the AOR, &chorus[�], is first computed then written out of
the ALU as the destination of the instruction ADDV. This Address Offset Register is
available as a source to the AGEN unit two program lines later; this is the first time that
AGEN has access to this information. Assuming no other pending external memory
accesses, AGEN takes the offset information at that time and makes the access, loading
the word of external memory data into some DILn. But that DILn does not become
available as source to the MAC unit (or ALU) for another two program lines due to
pipeline latencies. DILn then replaces the delayspec, *&chorus[�], in the program
above. This makes a total of three intervening lines of code; rather, *&chorus[�] must be
referenced (desiring minimum latency in this case) no earlier than the fourth line of code
after the computation of the address; viz.:

NOP NOP WR DOL0 > chorus[0]S ! input
NOP ADDV &chorus[100], lfo > &chorus[�] !this is address computation
NOP
NOP NOP RD chorus[�]S > DIL1 !access external memory
NOP NOP RD chorus[(+)]S > DIL1
 DIL1 X coef1 > MAC
MAC + DIL1 X coef2 > output
!This is a partial AGEN listing of the earlier program.

60

5.9.4. Optimal AGEN Coding
If the computed AOR, &chorus[�], were written out of the MAC unit, unlike our example
above, the latency as source to the AGEN would have been one program line less. See
the section called Pipeline for all minimum inter-unit latencies by example; other cases
can be figured from the chart there.

There is nothing preventing the programmer from performing the address computation of
&chorus[�] after the external memory request. The external memory access would
employ the old address in that case, but the coding efficiency gained is often well worth
the added latency.

5.9.5. Computed Addresses and Table Lookup
The second case of computed addressing that we will consider is for table lookup; one or
multiple tables occupying an entire region. This can be handled in nearly the same way
as for the computed delayline address offset. Here we place the table index in an AOR,
and add to that the table root in the multiple table case. But the absolute region start
address remains unmodified in the region BASEr SPR.

Tables employ region memory using the same AGEN modulo addressing mechanisms as
delaylines. Regions must therefore be dichotomized by the programmer as those which
are utilized for tables and those which are utilized for delayline accesses; i.e., tables and
delaylines should not reside in the same region. The reason for this is that a programmer
is required to modulo decrement the BASEr register associated with a region of
delaylines, once per sample period. Since a table lookup requires a fixed region BASEr
reference, a region of delaylines offers a moving target.

5.9.6. Computed Addresses and Structured Table Lookup
In yet a third case of computed addressing schemes, we have many different tables in
memory all residing in the same region. If we now put the absolute pointers (addresses)
for the beginning of each table into AORs, the desired table index (the relative offset) for
each lookup could then be written to the region BASEr register in this reversal of roles!
The utility of this unorthodox method comes about when multiple tables have like-
information at the same index; analogous to a structure-type in the C programming
language.

One way to compute the absolute table pointers would be as follows:

DEFREGION R @location_zero
 base1 = location_zero ! AOR declaration
 first_table[length1]
 base2 = #location_zero + first_table[length1] + 1
 second_table[length2]
 base3 = #location_zero + second_table[length2] + 1
 third_table[length3]
 !...and so on

The chip architecture allows other means of accomplishing the same end, but this is, of
course, up to the programmer.

61

5.10. Defeating the Modulo Addressing Hardware
By setting the region ENDr SPR to the maximum physical address, the programmer can
defeat the automatic modulo addressing, and the content of SIZEM1r becomes
irrelevant. This setting can be accomplished via either a DEFSPR directive or as an
instruction in the code. This setup of the region control registers is employed when it is
desired to unequivocally address external memory as one or several tables.

It is not critical, however, to manually set the region ENDr register to implement tables;
i.e., modulo addressing need not be defeated to successfully address a region as a table. It
is probably more important not to decrement the region BASE in a region used for
holding tables.48

5.10.1. Peripheral I/O
When absolute addressing is required as for I/O devices, the region BASEr could be set
to zero while the region ENDr is set to the maximum physical address. The desired
absolute address49 could then be placed in some AOR. Again, the region BASEr would
not be expected to undergo modification during program execution. The programmer
must reset the MUX_ADDR bit in the HARD_CONF SPR which selects the linear
addressing mode (SRAM mode); this can be done either in the declarations or
dynamically in the program. This setup of the region control registers is employed when
it is desired to unequivocally access external memory in absolute terms.

Once again, it is not critical to manually set the region BASEr and ENDr SPRs to
implement absolute addressing. For example;

DEFREGION I[$100000] @$D00000
 portIO[1] @0
 parallel_ADC[1] @$40000
 parallel_DAC[1] @$50000

These declarations establish a region of size $100000 starting at $D00000. Whenever
portIO[0] is referenced in the code, the external memory address buss asserts absolute
$D00000. Whenever parallel_ADC[0] is referenced, the address buss asserts $D40000�.
parallel_ADC[1] asserts $D40001, and so on. This brings us back to the recommended
usage of AORs as relative address offsets into a region. The advantage of this scheme is
that we need not concern ourselves with the assignments of the region control registers.

48as one would for delaylines, discussed shortly in UPDATE region BASE.
49This would be a departure from the standard practice of using AORs to hold address offsets.

62

5.10.2. Region Configuration Summary
As it stands, neither delaylines, nor tables, nor peripheral I/O space have distinct
declarators; only regions are declared. The subtle differences between table, delayline,
and I/O references lay in how the associated regions are utilized by the programmer. It is
important that however the region control registers (BASEr, SIZEM1r, ENDr) get set,
the programmer always has the final say regarding their contents. So, in general, it is true
that any SPR explicitly declared and initialized in a DEFSPR should override any
assembler determination of its initialization contents. But, programmer override of
region BASE, SIZEM1, and END initialization is not observed by the assembler when it
is making AOR assignments.

5.11. Plus-One Addressing Mode
The AGEN supports a special addressing mode in which 1 is added to the address offset,
obtained from a specified AOR, before it is used in an external memory access. This
addressing mode is useful for interpolation. (See the ESP2 Applications section.)

 *choruspointer X coef1 > MAC
MAC - *choruspointer(+) X coef2 > output

The second program line uses the syntax (+) to mean:
 address offset, in the AOR choruspointer, plus 1�.
This syntax is not a C-style operator because neither the region BASEr nor the AOR are
permanently modified using this addressing mode.

Plus-One addressing may also be used with an array-type delayspec as in:

 myline[118(+)]

5.12. Forced WR
Normally, the assembler schedules all the external memory-reads first. Once this is done,
the closest following available AGEN instruction slots are used to schedule whatever
external memory-writes were requested by the program. Under some circumstances,
however, it is desirable for the programmer to insure that particular writes take place with
minimum holdoff. For this purpose the destination syntax

 =>�delayspec

is used in place of >�delayspec for AGEN coding in the MAC unit or ALU
instruction fields.

63

5.13. UPDATE region BASE
The AGEN has one last feature which enables the programmer to optionally write an
address offset plus region BASEr back into the BASEr register after an external
memory access (RD or WR). This allows for modulo incrementing or decrementing the
region BASEr by specified amounts. Using the pointer-type expression, *dp, in the
AGEN instruction source operand field, we have the new delayspec:

... RD *(BASE += tablejump) > DILE !UPDATE region BASE after read

This AGEN instruction says that the external memory to which the AOR, tablejump,
points, is read and placed in the Eth DIL. The absolute external memory address is, as
always, the modulo sum of the region BASEr and the specified AOR contents.50 In this
addressing mode, however, the modulo sum is deposited back into BASEr after the
external memory access; i.e., the region BASEr register is post-incremented by the
contents of tablejump, thus the contents of BASEr is updated.

The increment may be chosen effectively negative. For example, to decrement the region
BASEr by 1 in a modulo fashion, the contents of the AOR tablejump must be set to the
contents of the region SIZEM1r SPR. To decrement by 2, the contents of tablejump
should be set to (SIZEM1r - 1), and so on.
For example:

DEFSPR DIL0 ! reserve DIL0

DEFREGION S @0
 diffusion_line[477]
 wait_line[412000]
 tablejump = SIZEM1S ! declaration must be at end of DEFREGION

CODE
NOP
NOP
NOP NOP UPDATE BASE += tablejump ! pure form

//NOP NOP RD *(BASE += tablejump) > DIL0
//NOP MOV *(BASE += tablejump) > DIL0
//NOP NOP RD *(BASE += &wait_line[412000]) > DIL0

The UPDATE of BASES is identical using any one of these lines of code, but the
commented lines (//) would each perform a read from external memory too. Notice how
an UPDATE is worked into the AGEN coding in the ALU instruction field. That
delayspec syntax is available in the MAC unit instruction field too. The pure form of the
AGEN UPDATE instruction, having no external memory access, is shown in the
example program. This pure UPDATE form is allowed only in the AGEN instruction
field.

50the modulus automatically determined by the size of the region, the particular region connoted
by the specific AOR.

64

The delayspec from the example,
 *(BASE += &wait_line[412000])
is interesting because the * operates on the entire contents of the parenthesis. This
makes sense because it comes from the established syntax, *&d[n] = d[n] . In our
example, &wait_line[412000] calls out an AOR which when added to BASE yields an
absolute external memory address. The * operator then requests the contents at that
address. Access of external memory is always accomplished by modulo summing an
AOR with a region BASE register. In this syntax, we explicitly show the sum to engage
the AGEN post-UPDATE mode.

5.13.1. Use of UPDATE

direction of
increasing
delayline
indices

0

Region S

diffusion_line[0]

wait_line[0]

Figure O. Region S at initialization. (Delaylines not drawn to scale.)

Initial BASES

At download time, BASES identifies the start of the region. The two declared delaylines
are of fixed size. We need to feed the delayline inputs ([0]) with a new sample while we
discard the oldest sample. The discard is primarily achieved by decrementing the region
BASE under program control. The discard is the last thing done in a sample synchronous
loop, so an UPDATE instruction will typically be found at the end of the program main
loop. To decrement the region BASE by 1 we add the size of the region less 1. Referring
to Figure�O, it is easy to see that adding the contents of SIZEM1 (as explained above) to
the initial region BASE, moves it one place to the left in the modulus, the modulus being
the region size. The automatic modulo arithmetic in the AGEN keeps all subsequent
decrements of BASES within the modulus.

Somewhere in the body of the program should be found writes to the delayline inputs.
Because the start (input, root) of each delayline can be interpreted as a relative address
offset with respect to the region BASE, all the delaylines will have shifted one place left
in the modulo memory, each following the movement of the region BASE. All delayline
address arithmetic in the AGEN is subject to the same modulo math. When each
delayline input is written, it will write over the contents of the oldest sample of the
preceding delayline in this modulo queue.

65

5.13.2. Explicit Region
The particular region BASEr is connoted through the declaration of the AOR called
tablejump in the earlier example, but the region can be explicitly indicated if desired.
Should you want to use the same offset into a different region, then that new region may
be specified using I, P, Q, R, S, T, U, or V in place of r�:

... UPDATE BASEr += tablejump !UPDATE region BASEr

... UPDATE BASE += (tablejump)r ! ditto

... UPDATE (BASE += tablejump)r ! ditto

BASEr means one from: BASEI, BASEP, BASEQ, BASER, BASES, BASET, BASEU,
BASEV.

The hardware does not support the simultaneous increment of BASE in one region while
an external memory access is made from another. So for the sake of clarity, one should
write only one explicit region specifier.

5.14. Region Override
In general, any delayspec may include an optional region specifier. In some
circumstances, it may be advantageous to override the default region which is implicit to
each delayspec. For example, the identical code statements,

DEFGPR coef1

CODE
 *&wait_line[�]S X coef1 > MAC

or
 wait_line[�]S X coef1 > MAC

are each redundant in the specification of the region S in light of the declarations in the
example above. But if another region were specified instead of region S, they would
remain valid delayspecs because this would then be a directive to use the same offset into
a different region of external memory. That ’different region’ need not have been
declared.

66

5.14.1. List of AGEN Instructions and AGEN Syntax
delayoffset is a declared Address Offset Register (AOR). &delayline[n] refers to the
same Offset Register. Several variations of the same instruction are shown.

 TABLE AGENLIST. AGEN unit Instructions.
 Instruction Operation
 NOP the only fundamental nop

 RD delayline[n]r > DILi read
 RD *&delayline[n]r > DILi read

RD *(delayoffset)r > DILi read

 RD delayline[n(+)]r > DILi read Plus-One
 RD *&delayline[n(+)]r > DILi read Plus-One

RD *(delayoffset(+))r > DILi read Plus-One

 RD *(BASE += &delayline[n])r > DILi read then UPDATE
 RD *(BASE += delayoffset)r > DILi read then UPDATE

 WR DOLi > delayline[n]r write
 WR DOLi > *&delayline[n]r write
 WR DOLi > *(delayoffset)r write

 WR DOLi > delayline[n(+)]r write Plus-One
 WR DOLi > *&delayline[n(+)]r write Plus-One
 WR DOLi > *(delayoffset(+))r write Plus-One

 WR DOLi > *(BASE += &delayline[n])r write then UPDATE
 WR DOLi > *(BASE += delayoffset)r write then UPDATE

 UPDATE BASE += &delayline[n]r UPDATE, no memory access
 UPDATE BASE += (delayoffset)r UPDATE, no memory access

67

6. Pipeline

Figure Pipe. Serial vs. Pipeline architecture.

Serial Pipeline1, 2, 3

1

2

3

2

3

We have not yet touted the benefits of a pipeline architecture, which is ESP2. We claim
that the pipeline affords an internal computational efficiency; the disadvantage is that the
programmer is required to be cognizant of various types of small latencies which are
listed and explained thoroughly in the Chip Spec.

We give an example of the same computation within two fictitious architectures requiring
M=3 different operations to complete, shown diagrammatically in Figure Pipe. We wish
to perform this computation on each of a sequence of, say, N=1024 numbers. We assume
that the operation cycle time is the same for every functional block in Figure Pipe. In the
serial architecture the computation time is M*N�=�3072 cycles, but in the pipeline
architecture the computation time is only N�+�(M-1)�=�1026 having an execution
latency=(M-1)=2.51 That is, the pipeline architecture is nearly 3 times faster than the
equivalent serial architecture. This achievement comes at a cost of 3 times the hardware
in this example, however.

This pipeline idea has been exploited in a number of commercial DSP architectures.
[Dattorro2400] One notable example is the WE DSP32 from AT&T. There the pipeline
is quite deep and non-orthogonal across the various categories of latency, making the
programmer’s job quite difficult. This problem is alleviated for the programmer
somewhat by adding a layer of abstraction in the form of a C-language compiler whose
output is translated into DSP32 code. The compiler output is often full of inefficiency in
the form of DSP32 NOPs to satisfy the various latencies.

Clearly, there is some tradeoff which balances computational efficiency with
programmability. We feel that we have found a good middle ground in the
parallel/pipeline architecture of ESP2.

51The latency in the pipeline causes us to refine our thinking of the ’next operation’ to the
’next queued operation’.

68

6.1. Minimum Inter-Unit Destination-to-Source Register Latency (through example)
REGISTER to REGISTER
MAC unit to ALU
 gpr1 X gpr2 > result NOP
 NOP ADD result, gpr3 > gpr4

ALU to MAC unit
 NOP ADD gpr1, gpr2 > result
 NOP NOP

 result X gpr3 > gpr4 ! result first becomes available as MAC source.

MAC unit to AGEN (address offset or region control registers)
 gpr1 X gpr2 > my_offset NOP NOP

 NOP NOP RD *my_offset > DIL3

ALU to AGEN (address offset or region control registers)
 NOP ADDV gpr1, gpr2 > my_offset NOP
 NOP NOP NOP

 NOP NOP RD *my_offset > DIL3

AGEN (UPDATE region BASEr) to MAC unit
 NOP NOP RD *(BASE += my_offset)r > DIL3

 -BASEr X #$800000 > MACP NOP

AGEN (UPDATE region BASEr) to ALU
 NOP NOP RD *(BASE += my_offset)r > DIL3

 NOP ADDV SIZEM1r, BASEr

EXTERNAL MEMORY to/from DATA LATCH
MAC unit to DOL
 reg1 X reg2 > DOL4 NOP WR DOL4 > *&delayline[200]

ALU to DOL
 NOP ADD reg1, reg2 > DOL4 NOP
 NOP NOP WR DOL4 > *&delayline[200]

MAC unit from DIL
 NOP NOP RD *&delayline[200] > DIL3
 NOP NOP NOP
 DIL3 X reg4 > reg4 NOP

ALU from DIL
 NOP NOP RD *&delayline[200] > DIL3
 NOP NOP NOP
 NOP ADD DIL3, reg4 > reg4

69

7. Indirection
The chip hardware provides an indirection mechanism for accessing internal registers.
Recall that the ALU employs the operands named A, B, and C, while the MAC unit
employs D, E, and F, and the AGEN unit has the G operand (which is an AOR). The
ALU MOV instruction, for example, moves the source operand B to the destination
operand C, while the MAC unit moves D to F.

NOP MOV B > C
MOV D > F

As is always the case for indirection in the ALU, the INDIRA and INDIRB pointer SPRs
hold the register address of the A and B source operands, respectively, while the INDIRC
pointer SPR holds the register address of the C destination operand. If we want to
indirect on the C operand, for example, we must first place the desired destination address
into the pointer register, INDIRC. We might accomplish this as follows:

DEFGPR gpr source=17 dest
DEFREGION R aor
CODE
MOV #gpr > INDIRC !move register address

NOP MOV source > INDIRECT

When the ALU sees the INDIRECT SPR in the C operand field, it substitutes the
contents of INDIRC for the C�operand address. So in this example, the contents of
source (=17) are moved to the GPR called gpr, because INDIRC holds the register
address of gpr.

We point out a potential pitfall here which arises in the coding of abbreviated instructions
employing implied destinations. This occurs, for example, when the ALU construct,
 OPERATION A, INDIRECT ! not recommended

is used in place of the verbose construct,
 OPERATION A, INDIRECT > INDIRECT
The first construct implies that the destination register address, inside INDIRC, is the
same as the second source register address, inside INDIRB. Since INDIRB cannot hold
the destination address of any instruction, then the first construct can only work as
implied if the programmer has preloaded both INDIRB and INDIRC with the same
address.

So, for indirection to work properly with no caveat, only the following constructs should be used in the

ALU:

 OPERATION INDIRECT, B

 OPERATION INDIRECT, B > C

 OPERATION A, INDIRECT > INDIRECT

 OPERATION INDIRECT, INDIRECT > INDIRECT

70

It is much easier to remember that for indirection to work as intended, use the verbose
ALU construct:
 OPERATION A, B > C

substituting INDIRECT where desired. An exception occurs for the use of indirection in
conjunction with the ALU’s ASDH, ASDL, LSDH, and LSDL double precision shift
instructions. Consult the Chip Spec.

Of course, the INDIRINC and INDIRDEC SPRs may be substituted for any INDIRECT
SPR. The use of these two SPRs as operand automatically post-increment/decrements the
corresponding pointer register.

The MAC unit has its own pointer registers corresponding to its D, E, and F operands:
INDIRD, INDIRE, and INDIRF. The AGEN unit has INDIRG. In general, there is less
abbreviation allowed by the assembler in the MAC unit than in the ALU, and there is no
abbreviation in the AGEN. So, the programmer is less likely to run into trouble coding
indirection in the MAC unit or AGEN.52

Pseudo instructions are plentiful in both the ALU and MAC unit, so the programmer must
consult the Chip Spec. to determine how operands get mapped for each individual
pseudo. In some cases, the programmer may need to resort to the instruction primitives
to get the desired result.

To reiterate the general rule: always use verbose constructs when coding indirection.

52Recall that the E operand in the MAC unit cannot be an AOR; likewise INDIRE cannot point
to an AOR.

71

7.1. Indirection, Minimum Latencies (through example)

MAC unit to MAC unit source
MOV #gpr > INDIRD ! same latency for INDIRE
NOP
MOV INDIRECT > dest

MAC unit to MAC unit destination
MOV #gpr > INDIRF
NOP
MOV source > INDIRECT

ALU to ALU source
NOP MOV #gpr > INDIRB ! same latency for INDIRA
NOP
NOP MOV INDIRECT > dest

ALU to ALU destination
NOP MOV #gpr > INDIRC
NOP
NOP MOV source > INDIRECT

MAC unit to ALU source or destination
MOV #gpr > INDIRB ! same latency for INDIRA or INDIRC
NOP MOV INDIRECT > dest

ALU to MAC unit source or destination
NOP MOV #gpr > INDIRF ! same latency for INDIRD or INDIRE
NOP
MOV source > INDIRECT

MAC unit to AGEN G operand (RD or WR)
MOV #aor > INDIRG
NOP
NOP NOP RD *(INDIRECT)r > DILn

ALU to AGEN G operand (RD or WR)
NOP MOV #aor > INDIRG
NOP
NOP NOP RD *(INDIRECT)r > DILn

72

 ESP2

 Ensoniq Signal Processor 2

 Part III

 Fundamental Audio Applications53

 Jon Dattorro

53  1995, Jon Dattorro

73

1. Linear and Allpass Interpolation
 for Application to Chorus, Flanging, and Vibrato Effects

1.1. Audio Applications of Interpolation
In this section, we present the topic of delayline interpolation from the more intuitive
point of view of the required fractional sample delay; i.e., a time domain viewpoint. The
classical derivation, called sample rate conversion, [Schafer/Rabiner] [Vaidyanathan] is
more a frequency domain formulation. In a musical context, sample rate conversion ratio
inverse (M/L in Appendix IX) corresponds to Pitch Change or Shift ratio. We synopsize the
classical results in Appendix�IX where will be found a schematic translation of the
fundamental algorithms we discuss to the more traditional DSP nomenclature. That
should serve to bridge the two viewpoints.

The technique of delayline interpolation is employed when it is desired to delay a signal by
some number of samples expressible as a whole plus some fractional part of a sample. This
way, the delay is not restricted to sample boundaries hence avoiding signal discontinuities
when the delay time is swept. Delayline interpolation is indigenous to Pitch Change and
Pitch Shift54 algorithms which are themselves integral to numerous other effects; e.g.,
Doppler, and Leslie Rotating Speaker emulation. Delay modulation forms the basis of the
Chorus effect and its close relative, the Flanger.55 Delay modulation alone (with no mix)
yields Vibrato when the modulation is sinusoidal. Use of delay modulation typically entails a
nominal signal delay because the modulation spans some desired range.

The interpolation methods we seek are computationally simple and inexpensive by
necessity. The interpolation algorithm may be executed many times in one sample-
synchronous audio processing program. Playing a subsidiary role, we typically cannot
afford interpolation routines that consume a large percentage of the allotted execution time.

1.2. !*** Linear interpolation ***
We show the kernel of the ESP2 code56 for Linear interpolation from Appendix XI. The
principles discussed in this section are applied therein.57

!********************* Linear interpolation ***************************
MOV nominal_delay > MACP
MACP + yqn X chorus_width > &VoiceL[�] !address, integer part

 frac X *&VoiceL[(+)] > MAC LSH MACRL >>1 > frac !fractional part (positive)

MAC + frac_u X *&VoiceL[�] > vibrato DIFF frac > frac_u
!**

54Pitch Change and Pitch Shift are distinguished later on.
55These two effects come about when the output signal is made to be a linear sum (mix) of the original
(dry) input and the dynamically delayed (wet) input signal. The Chorus and Flanger are distinguished
primarily by the minimum delay in their delay range. (The minimum is less for the Flanger.)
56ESP2 is the second-generation Digital Signal Processing chip for audio from Ensoniq Corp., Malvern,
Pennsylvania, USA. Finished in 1995, it was designed to supersede the Motorola 56000 series.
57The complete ESP2 program in Appendix XI is fully tested and in production.

74

The process called Vibrato58 is shown diagrammatically in Figure L. The local index m
is defined as the current computed relative index into our delayline with respect to its
root. The local index, m , requires computation because we want it modulated by the
LFO (low frequency oscillator), yqn, oscillating as a function of time, n. The range of

m , ±CHORUS_WIDTH, is centered about the nominal tap point into the delayline,
NOMINAL_DELAY.

frac_u

. . .
2048

. . .
0

2 X CHORUS_WIDTH

frac

delayline, VoiceL[2048]

Figure L. vibrato = frac X VoiceL[m+1] + (1 - frac) X VoiceL[m]
 This is the desired analytical result, not ESP2 syntax.

vibrato

vibrato

 NOMINAL_DELAY

m = INT(m.frac)

frac = m.frac - m

m m+1

m.frac = NOMINAL_DELAY + yqn X CHORUS_WIDTH

frac_u = 1 - frac

Note from Figure L that because the time-varying fixed-point expression m.frac is
always a positive index into the delayline, then the coefficient, frac, is always positive.
The time-varying positive coefficients, frac and frac_u, are 23-bit resolution because
chorus_width (assigned as CHORUS_WIDTH in the declarations) is scaled by the oscillator,
yqn (q for quadrature), which is in q23 format.59

58In the context of audio effect design, Vibrato is most often defined to be undulating pitch
change although it can certainly be accomplished by other means.
59See Scientific and Binary-Radix Notation.

75

In the program, the role of m is fulfilled by the AOR, &VoiceL[�]. The brackets of
&VoiceL[�] are empty, in the program, to highlight the fact that the index into the
delayline, VoiceL[2048], is being computed by the program. Unlike m , &VoiceL[�]
must be computed with respect to the region BASE; i.e., the root address offset of
VoiceL[2048] must be taken into account.

 &VoiceL[�] = m + root

where root = &VoiceL[0]. The (non-fractional) root is extracted for us by the
assembler in the declaration of nominal_delay, which is apparently used in the
programmed computation of &VoiceL[�]. That declaration of nominal_delay accounts
for the fact that VoiceL[2048] may not be the first or only delayline existing in the region
(although in our example it is). Declared as such, we handle the general case.

1.3. Linear Interpolation as a Polyphase Digital Filter
We are probably not accustomed to think of Linear interpolation as a filtering process.
This is because it is such an intuitively simple algorithm in the time domain performing
variable, fractional sample delay. Yet Linear interpolation is used routinely to perform
sample rate conversion in contemporary sampler-type music synthesizers,60 and we
know that there is a vast amount of literature on the subject which poses the conversion
problem in the frequency domain.

Linear interpolation as applied in the Chorus, Flanger, and Vibrato effects, makes small
undulating changes in pitch. If we listen closely to these effects, we will also discover a
significant perceived loss of high frequency content not attributable to comb filtering.61

It is this observation that compels a frequency domain analysis.

60There, it is most often manifest as a constant Pitch Change at playback dependent upon the
key struck. (We distinguish Pitch Change from Pitch ‘Shift’. [Dattorro2400]) The technique
used to accomplish Pitch Change by fixed amounts is called the phase-accumulating oscillator.
[Moore,ch.3]
The Ensoniq Mirage, introduced back in 1984, employed zeroth-order interpolation (choosing
the nearest sample in time) in conjunction with 8 phase-accumulating oscillators. The Mirage,
one of the earliest sampler-type music synthesizers, is still in commercial use because of its
characteristic sound quality due primarily to its digital encoding scheme. Its hybrid floating-point
design was based on an 8-bit mantissa and an 8-bit exponent. Recorded sound samples employed
only the mantissa. Subsequent enveloping applied the 8-bit exponent to the analog reference on a
D/A converter. That way, the signal to noise ratio of the original sample was not compromised
when the signal was dynamically scaled. -Robert Yannes
61When a signal is added to a delayed replica of itself, comb filtering results.

76

Ζ-1

x

x

∑

Figure PL. Linear interpolation circuit.

1 - frac

frac

x[n-m] v[n]

x[n-(m +1)]

In Figure PL we show the actual two-input linear time-varying digital circuit (in DSP
format) which implements standard Linear interpolation. We have drawn it in a strange
way to emphasize the non-sequential access of the required input samples. The time
index, n, steps through discrete time in a sequential fashion; 0�<�n < ∞ . The index, n,
always refers to the current sample.

In the circuit, the z-1 (unit delay) is not terminated because the local index, m , is time-
varying (it changes at each time step, n), which is to say that it can take on any value
within bounds.62 From the declarations in our program we have implicitly established
the parameters: 0�< �m� <�2048�. The consequence of these considerations is that
x[n-1-m] is not necessarily the old value of x[n-m].

Ideally what we want is for v[n] to approximate the value of the continuous signal x(t)
at points in time between sample instants; i.e., we would like

 v[nT] ≈ x((n - m.frac)T) (lipdf)

where T is the sample period. The Linear interpolation circuit makes this approximation
(lipdf), but it is a time-varying circuit63 because its coefficients are a function of m.frac
as outlined in Figure L. The circuit of Figure PL is polyphase because whenever an
output sample v[n] is computed, a new pair of coefficients is fetched yielding a different
phase response from one of the filters in an ordinal set.64 [Vaidyanathan,pg.166] Notice
that when frac=0, which is not unusual, the circuit performs no filtering action; i.e.,
allpass.

62Strictly speaking, m is a function of n; i.e., m(n). Its non-sequential nature demands random
access of external memory.
63It is possible for a polyphase network to be time-invariant even when the constituting circuits
are time-varying. This happens when the output signal is a replica of the input signal to within a
constant and/or a delay term. [Vaidyanathan]
64The number of possible coefficients is related to their resolution; there are L=223 possible pairs of
coefficients, hence that many polyphase filters. [Crochiere/Rabiner,ch.4.3.11]

77

To make the connection from the circuit to our program, we make the analytical
identification:

 x[n-m] = VoiceL[m] !not ESP2 syntax65

This identification locates the requested sample in our delayline. It is clear that x[n]
always refers to VoiceL[0] as this is the current sample. This is true because BASEV is
decremented in the program, and positive m indexes older samples in our delayline.

1.3.1. High-Frequency Loss of the Linear Interpolator
To facilitate the investigation, we will approximate the actual circuit used (shown in
Figure PL) with the polyphase filter circuit in Figure PL2. We can do this because the
two inputs in Figure PL are separated by one sample in the delayline. We need not
assume constant m for the analysis because we will view the instantaneous transfer
function of this non-recursive network,66 represented by Figure PL2.

Figure PL2. Linear interpolation analytical circuit approximation.

Ζ-1

x

x

∑
1 - frac

frac

x[n-m] v’[n]

Because of the constant interrelationship of the time-varying coefficients, the circuit
approximation has an instantaneous frequency response that traverses a domain having an
allpass transfer function [1, z-1) at either extreme of the coefficients, to an averaging

transfer (1 + z-1) /2 in the middle. This large set of transfers are the frequency
responses of the polyphase filters. In Figure PLS we show several of these transfers,
corresponding to different values of frac.

65Delayspecs in the form of external memory array references expect constant expressions
within the brackets.
66We freeze time and then determine the transfer function at that moment. This analytical
device is justifiable if m changes slowly in time. The circuit approximation in Figure PL2 is
only used for analysis; it is not used in the actual implementation.

78

0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

ω/2π

V’(ejω)

X(ejω)

Figure PLS. Spectra of Linear interpolation polyphase filters.

[1, z-1)

(1+z-1)/2

It is this set of transfer functions in Figure PLS that we hear in our effects.67 In some
cases, flutter is clearly audible and objectionable. In other cases, a veil seems to have
been placed over the sound source.

We could eliminate this artifact if the polyphase filters were allpass. So we need to know
if it is possible to make the individual polyphase filters have allpass transfers while still
performing interpolation. The answer is in the affirmative [Vaidyanathan,pg.166]
[Renfors/Saramäki] and we explore this in the section, Allpass Interpolation.68

67Each curve below the single allpass is duplicated since there are two sets of coefficients

corresponding to each curve in the case of Linear interpolation (for example, (0.25�+�0.75�z-1)

and (0.75�+�0.25�z-1)).
68The reason that the polyphase filters can have allpass transfer is because:

The formal frequency domain formulation of interpolation derives the polyphase filters
from what is called the prototype interpolation filter. The prototype filter is simply a
successively delayed sum of the L polyphase filters

 H(z) = ∑l e
-jωl El(ej ωL)

constituting the complete set. [Vaidyanathan,ch.4.3] The prototype filter response must
not be allpass, by definition, but no such restriction is placed upon the individual
polyphase filters! In fact, for the idealized formulation of interpolation by a rational
factor, each polyphase filter is exactly allpass; (See Appendix IX for interpretation.)

 El(ejω) = ej((ω-2πm)l/L)

where l is the polyphase filter number, L is the upsampling rate, m is the prototype
replication number or the frequency-band number of an Lth-band (Nyquist(L))
prototype. [ibid.,pg.168,109,124] [Crochiere/Rabiner,ch.4.2.2]

When we sum all the successively delayed non-allpass polyphase filters of Linear interpolation we

79

ω / 2π

Figure PLD. Delays of Linear interpolation polyphase filters.
 The extreme polyphase filter z-1 is not used.

samples

0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1
z-1

(1+z-1)/2

Figure PLD shows the delay transfer as a function of frequency introduced by the polyphase
filters corresponding to Figure PLS. The fractional sample delay is figured as the negative of
the phase response divided by the radian frequency; i.e., the phase delay. This signal delay
is with reference to a steady state sinusoid of infinite duration.

The delay transfers of the polyphase filters are as important as their frequency transfers.
When the coefficient, frac, calls for a quarter-sample delay, for example, we would like a
constant quarter-sample delay for all frequencies. The only delay transfer of Linear

interpolation that perfectly meets this criterion is the one in the middle, (1 + z-1) /2; i.e., it is
the only one, aside from the trivial case of frac=0, that we will see having linear phase,
hence a constant delay (half-sample, this case). It is observed from Figure�PLS and
Figure�PLD, that when the filtering is at its worst the delay is perfect.

Notice that the delay for each individual polyphase filter in Figure PLD is fairly constant in
the low frequency region, however. If we regard only DC, we make the further observation
that the delay perfectly tracks the polyphase filter coefficient, frac, as desired. This property
is a major determinant in the performance of the Linear interpolator from the standpoint of
THD+N of low frequency signals.

get the transform of a sampled triangular finite impulse response, which is what we expect from the
prototype. [Crochiere/Rabiner] [Opp/Sch,pg.109]

80

Figure PLA. Average Delay of each Linear interpolation polyphase filter.

samples

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

frac = filter no. / 223 ≡ l / L

Figure PLA shows the average delay (over frequency) of each individual polyphase filter
for the Linear interpolator. There are L=223 different polyphase filters because that is
how many different non-negative coefficients there are in 24-bit two’s complement, q23
format. [Crochiere/Rabiner,ch.4.3.11] The straight line is the desired average.

81

1.4. Allpass Interpolation
The implementation cost vs. performance of Linear interpolation is difficult to beat,
especially as the nominal sample rate is increased. It does have significant drawbacks,
however, which motivates us to look for better methods.

The drawbacks to the use of Linear interpolation are:
1) it is a lowpass process having a dynamic zero at the Nyquist frequency creating
muffled sounds and unaccounted damping in signal paths employing this process,
2) the dynamic zero of its polyphase digital filters introduces audible flutter (amplitude
modulation) which is quite objectionable near unity Pitch Change Ratio for sounds
having much high frequency content,
3) an exceptional amount of aliasing occurs and is worst for large pitch change upwards,
corresponding to the case of sample rate reduction (decimation).69

Other companies [Rossum] report alternative interpolation strategies.70 The author
recommends Lagrange interpolation [Crochiere/Rabiner] [Schafer/Rabiner] [Ramstad]
[Laakso/Välimäki] which is an analytical extension to Linear interpolation.71 But non-
recursive FIR (finite impulse response) techniques such as these have a high computational cost.
Nonetheless, FIR filters dominate contemporary sample rate conversion practice because from
the point of view of internal truncation noise, it is difficult to mess up an FIR implementation.
[Dattorro89] [DattorroPat.] [Andreas] Also, FIR filters offer linear phase.72

69This last problem comes about because the prototype Linear interpolation filter has (one-sided)
bandwidth π/L in the Vaidyanathan sense; the same is true for Allpass interpolation. The bandwidth is
not a design parameter, but falls out as a result of the implementation. When the decimation rate M
exceeds the interpolation rate L, aliasing is traditionally tolerated for these two techniques. When our
musical applications of interpolation operate only over a microtonal conversion ratio, then aliasing is less
of an issue.
70The E-mu Proteus sampling music synthesizer (1989) and its relatives all employ 7th-order
interpolation polynomials. They aren’t exactly ‘Lagrange’ though. They use a technique in which a
Remez Exchange is applied to an ‘ideal’ filter response similar to that of Lagrange, but having lower
maxima in the stopband. This gives the deep notches advantageous in the Lagrange approach, but also
the superior stopband rejection of a sinc-based design. For more information, see the US patent on the
fundamental E-mu G-chip interpolator; No.5,111,727. -David Rossum
71i.e., a higher-order polynomial curve fit using more signal values, and which is maximally flat in the
frequency domain while suppressing ripple in the time domain. The two-point Lagrange interpolator is
equivalent to Linear interpolation.
72Generally speaking, a linear phase prototype interpolation filter does not guarantee linear phase
polyphase filters, and vice versa. Linear interpolation, for example, is a classical case of an FIR prototype
that is linear phase (having a symmetrical triangular impulse response of length 2L spanning two original samples

by design [Opp/Sch,pg.109] [Crochiere/Rabiner]) but whose polyphase filters are not. But if a linear phase
prototype is perfectly bandlimited to π/L, for L a rate conversion factor, then all its L polyphase filters

will also be linear phase; ideally of the form El(ejω)�=�ej((ω-2πm)l/L) where m is the frequency-band

number of an Lth-band (Nyquist(L)) prototype. [Adams,pg.545] [Vaidyanathan,pg.168] [Opp/Sch,ch.5.7]
(See Appendix IX for interpretation.) Crochiere [Crochiere/Rabiner,ch.4.3.6-4.3.10] gives explicit general
design procedures for simultaneously linear phase FIR polyphase and prototype interpolation filters.

82

Recursive polyphase filters have not been popular because they are not linear phase, in
general.73 The practice of recursive digital filtering requires an understanding of fixed-
point arithmetic, truncation noise recirculation, [Dattorro] and transient phenomena.

We present here the simple recursive technique of Allpass interpolation which is useful
primarily for microtonal changes in pitch (less than ±one semitone). Linear interpolation
will outperform it from the standpoint of the Total Harmonic Distortion plus Noise74

(THD+N). Otherwise, Allpass interpolation eliminates the drawbacks of Linear
interpolation in this microtonal region, and makes the interpolation sound analog.

Figure PA. Allpass interpolation circuit. JonD 1994

Ζ-1

x ∑
1 - frac

x[n-m] a[n]

Ζ-1

x
1 - frac

x[n-(m +1)]

Figure PA, a modification to Figure PL, shows the actual circuit used to implement Allpass
interpolation. [Smith/Friedlander] Our application of Figure PA employs time-varying filter
coefficients. The formal derivation of the ideal network [Vaidyanathan] [Renfors/Saramäki]
requires as many recursive memory elements as there are coefficients (L=223 in 24-bit (q23 format)
two’s complement).75 In the ideal network, the filter coefficients are fixed. That is one reason
why this simpler network in Figure PA (employing only one recursive element with a time-varying

coefficient) only performs well (in terms of THD+N) for small pitch changes. Making the same
analytical circuit approximation as before, we can see that connection of the node at x[n-(m +1)]
instead to the unit delay would make the instantaneous transfer function of the resulting polyphase
filter, allpass. This means that the polyphase interpolation circuit in Figure PA has a frequency
response which is approximately allpass; |A(ejω)/X(ejω)| ≈ 1.

73Renfors’ IIR design offers nearly linear-phase recursive polyphase and prototype interpolation
filters. [Renfors/Saramäki]
74This is a measure of signal purity which aggregates everything that is not signal, and then
relates that to some purified reference which is usually the signal itself. THD+N distortion is
inherent to either interpolation process.
75Each recursive memory element resides in a structure like Figure PA having the feedforward delay
element connected. See Appendix IX. Our simulations have shown that as few as L=28 recursive
elements work quite well to make constant or sweeping Pitch Change over a large range. For the
analogous case in Linear interpolation, also see [Crochiere/Rabiner,pg.81,ch.4.3.11] which shows that
Linear interpolation is ideally implemented because of the lack of any long term memory.

83

As shown in Figure PA, the time-varying coefficients (frac_u=1-frac) are easily derived from
m.frac as in Figure L. We find that, subjectively, the circuit of Figure PA sounds quite
smooth in musical applications. But, analytically speaking, the desired signal-delay introduced
by the circuit approximation does not track frac as well as it does for Linear interpolation.

ω / 2π

Figure PAD. Delays of Allpass interpolation polyphase filters.
 The extreme polyphase filter z-1 is not used.

samples

0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1
z-1

(1+0.95z-1)

(0.95+z-1)

Figure PAD is the plot corresponding to Figure PLD. Notice how the delay between filters is
spaced unevenly; especially noticeable at DC. But for each individual filter, the delay is still
fairly constant in the low frequency region.

Figure PAA. Average delay of each Allpass interpolation polyphase filter.

samples

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

frac = filter no. / 223 ≡ l / L

84

Surprisingly, the average delay (over frequency) of each polyphase filter, shown in
Figure�PAA, is better than that for Linear interpolation (compare to Figure PLA).

It is reasonable to expect that we could force the delay of each polyphase filter to be
equal to any desired value at a particular frequency by appropriately altering the
polyphase filter coefficients. This would be beneficial were we concerned with THD+N
performance in a particular frequency region.

Indeed, the exact equation to warp the allpass circuit coefficients in Figure PA is
[SmithIII,pg.178]:

sin(ω (1 - τ))

2

sin(ω (1 + τ))

2

1 - frac

where τ is the desired fractional sample delay at ω, the desired normalized radian
frequency. We can eliminate the dependency of the equation upon signal frequency ω
when we are primarily concerned with THD+N performance at low frequencies
(ω�near�0). For then the coefficient warp equation simplifies to:

≈

(1 - τ)

(1 + τ)

1 - frac = 1/3 + ∑
i =1

 ∞ (-2)i+2

3i+1
(τ - 1/2)i (sw.eq)

This is a reasonable substitution for audio signals. From Figure L we can see that the
desired fractional sample delay is frac, so we make the identification, τ = frac .

Figure WPA. Warped Allpass interpolation circuit. JonD 1994

Ζ-1

x ∑
x[n-m] aw[n]

Ζ-1

xx[n-(m +1)]

1 - frac
1 + frac

1 - frac
1 + frac

Figure WPA shows the actual time-varying circuit used to implement warped Allpass
interpolation using the simplified warp equation (sw.eq) in place of the allpass
coefficients shown in Figure PA.

85

0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

ω / 2π

Figure PADW. Delays of Allpass interpolation warped polyphase filters.
 The extreme polyphase filter z-1 is not used.

samples

(1 + 0.95/1.05 z-1)

(0.95/1.05 + z-1)

z-1

Figure PADW demonstrates the even distribution of delay across the polyphase filters at
low frequency using the simplified warp equation (sw.eq) as shown in Figure WPA. This
closer tracking between frac and signal delay will help improve somewhat the THD+N
performance at low frequencies.

Figure PAAW. Average delay of each Allpass interpolation warped polyphase filter.

samples

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

frac = filter no. / 223 ≡ l / L

86

But the improvement to delay distribution in the low frequency range causes the average
delay shown in Figure PAAW to suffer as we might expect (compare to Figure PAA).
We find, analytically, that for Allpass interpolation of low frequency sinusoids on up to a
few kHz, use of the simplified coefficient warp equation (sw.eq) is desirable from a
THD+N standpoint. But for some of our musical applications we have not found it
absolutely necessary to implement the circuit using different coefficients than those
shown in Figure�PA. Within an ESP2 implementation, however, several computed terms
from the Taylor series expansion (sw.eq) of the simplified warp equation (or a table lookup

routine) would easily map 1-frac to the warped coefficients of Figure�WPA. We
demonstrate this shortly.

Distortion Analysis

0.96 0.98 1 1.02 1.04 1.06

-100

-80

-60

-40

-20

0.96 0.98 1 1.02 1.04 1.06

-100

-80

-60

-40

-20

(a)

(b)

dB

dB

Figure THD. Simulated THD+N of pitch-changed sinusoid due to:
 (a) Linear interpolation,
 (b) Allpass interpolation.

Pitch Change Ratio

Pitch Change Ratio

87

Figure THD estimates the Total Harmonic Distortion plus Noise of a 16-bit 401 Hz sinusoid,
sampled at 44.1�kHz, for various constant pitch changes spanning ±one semitone. The C-
program simulation which produced the THD+N estimates in Figure�THD (b), employs the
simplified warp equation (sw.eq) and 16-bit polyphase filter coefficients. Without (sw.eq), the
THD+N in (b) would be about -44�dB. The polyphase filter coefficients used to make
Figure�THD (a) are 8-bits in width.

The employment of Allpass interpolation now warrants consideration of transient phenomena as
well as truncation error recirculation: The predominant artifact exposed in Figure THD (a)
(Linear interpolation) is harmonic distortion due to the facts: 1) the two-tap FIR magnitude transfer
is modulated by the time-varying coefficients, and 2) the actual delay of the two-tap FIR deviates
from the desired time-varying delay. The predominant artifact exposed in Figure�THD�(b)
(Allpass�interpolation), however, is distortion due to transients arising from the time-varying
polyphase filter coefficients. Even though the filter coefficients are updated at the sample rate,
the nature of the Pitch Change/Shift algorithm (as outlined in Figure L) demands a disjunct sequence
of desired fractional-sample delay. While truncation noise is a second-order artifact in both
cases, we mention that truncation post-accumulation, as can be seen in the ESP2 programs, is
emulated.

1.5. ESP2 Programs for Allpass Interpolation
We show the required changes to the ESP2 Linear interpolation program to implement
Allpass interpolation by two of the methods discussed above. The following sections of code
would each replace the corresponding section labelled !***�Linear�interpolation�***�. This
first implementation does not employ coefficient warping.

!***************** Allpass interpolation ******************JonD 12/30/94***********
NOP MOV #2.**-8. q24 > MACP_L !1/256th sample offset

MOV nominal_delay > MACP_H MOV *&VoiceL[(+)] > MACP !to second seed

MACP + yqn X chorus_width > &VoiceL[�]

MACP + frac_u X *&VoiceL[�] > MAC LSH MACRL >>1 > frac ! q23

MAC - frac_u X vibrato > vibrato DIFF frac > frac_u
!**

The code above implements the digital circuit in Figure�PA having time-varying coefficients
derived as in Figure L. The total cost of this Allpass interpolator is one more line of ESP2
code over that for the Linear interpolator.

We require the implementation to prevent prolonged Nyquist (Fs / 2) oscillation that comes
about when frac=0. This happens whenever chorus_width is set to zero by the system host.
We minimize Nyquist oscillation by forcing the circuit to interpolate by a constant fraction of
a sample at all times. (That is the purpose of the first line of code above.) This technique
introduces a constant fractional offset into the equation for m.frac in Figure L (not�shown
there), and has little deleterious audible consequence.

Next we consider coefficient warping to improve the processing THD+N:

88

DEFGPR Taylor nest
!***************** warped Allpass interpolation ************ JonD 5/22/95************

MOV nominal_delay > MACP MOV *&VoiceL[(+)] > MACP
MACP + yqn X chorus_width > &VoiceL[�]

MACP + frac_u X *&VoiceL[�] > MAC LSH MACRL >>1 > frac
MAC - frac_u X vibrato > vibrato SUB HALF, frac > Taylor

MOV #-32./81. > MACP MOV #16./27. > MACP
MACP + #64./243. X Taylor > nest ASH #-8./9. >>1 > MACP
MACP + nest X Taylor >>1 > nest ASH #1./3. >>1 > MACP
MACP + nest X Taylor > nest
MACP + nest X Taylor <<1 > frac_u
!***

This Allpass interpolator code employs the first five terms of the Taylor series expansion
of (sw.eq) to map frac into (1-frac)/(1+frac). It implements Figure WPA via the map:

frac_u = 1/3 + (frac-1/2)[-8/9 + (frac-1/2)[16/27 + (frac-1/2)[-32/81 + (frac-1/2)[64/243]]]]

Since the map is only approximate, it is no longer necessary to prevent Nyquist
oscillations as before. We measure an improvement of 26 dB in THD+N over that of
the previous Allpass interpolator code,76 attributable to the coefficient warp. Linear
interpolation exceeds this particular THD+N performance, but only by a few dB; viz.,

Measured Linear interpolation: -78 -> -88 dB
Measured warped Allpass interpolation: -77 -> -85 dB

These THD+N measurements are time-varying because the sinusoid frequency is slowly
modulated by the LFO, yqn, in the code. That is why they are indicated as a range. All

polyphase filter coefficients are 24 bits, the sample rate is 44.1�kHz. As is apparent from
the ESP2 program, truncation is post-accumulation.

Having reached parity between the two processes in terms of THD+N, we would
preferentially choose Allpass interpolation because it eliminates the drawbacks stated at
the outset when employed in a microtonal region.

1.6. Theoretical Extensions
[Laakso/Välimäki] broadens the scope of this Allpass approach to interpolation. They provide
formulae for allpass polyphase filters of higher order that possess a more linear delay vs.
frequency, thereby providing a prototype interpolation filter (see Appendix�IX) having higher
stopband rejection. The delay linearization as follows filter order is not quite as fast as we might
like, however. [Välimäki/Laakso] deals with transient phenomena.

76having declared the LFO Freq=0.1 Hz in a real-time ESP2 hardware development system,
frequency modulating a 24-bit, 400 Hz sinusoid into an Audio Precision, Inc., analog signal
analyzer.

89

2. The White Chorus Effect
Any complete discussion of the Chorus effect must consider its relative, the Flanger. The
intended goal of Chorusing is to emulate the independence of multiple like-voices
playing in unison. But the goal of Flanging is to jolt the ear’s time-correlation
mechanism by offering a signal replica delayed by an amount that is within the
integration time constant of the hearing system.77 We must first note that there is a very
strong bond between the implementation of the Chorus effect and of the sonically radical
Flange effect. What has gestated into the industry standard for this species condenses
simply to a sum of the original input signal with a delayed replica. In either effect, the
replica delay is modulating and never static. The consequence of summing the two
signals is to introduce moving troughs into the input signal spectrum. In the case of
Flanging, that is the desired result; the deeper and more selective the troughs are, the
better.78 In the case of Chorusing, the troughs are undesirable and an effort is made to
limit their depth by summing unequal amounts of original signal and delayed replica. But
the primary distinguishing design feature of the Choruser is that the minimum of the
modulated delay time is much greater than that of the Flanger. The principal reason is so
as to avoid flanging, by the Choruser, which becomes subjectively more pronounced for
small delays. Indeed, the best Flangers can sweep the delay all the way to absolute zero;
no delay.

In Figure Chorus we present a modification to the industry standard two-voice Chorus
effect, that attempts to compensate for the spectral aberration caused by the many troughs
in the feedforward sum. The modification is the introduction of a feedback path into the
delayline, whose tap point is separate from that of the feedforward path but fixed at the
center of the modulating delay in the feedforward path. Hence, the Chorus circuit
approximates an allpass filter when the changing delay in the feedforward path is
proximal with the fixed delay in the feedback path. We prefer not to feed back a
modulating signal because the modulation induces pitch change. Feeding back a pitch
changed signal produces more pitch change and becomes objectionable quickly for either
intended effect. Feedback is gainfully employed in the Flanger in an inverse sense to
make a comb filter that increases the perceived depth of the troughs; i.e., the same
circuit can be used for both effects.

77The familiar thunder of a jet aircraft often reaches our ears by combination in air of the direct
and reflected engine backwash. As the aircraft changes position, the reflection time changes and
Doppler due to the aircraft’s recession is introduced into both paths. The roar is more interesting
as the reflection time is swept; that introduces more Doppler pitch change into the reflected path.
78The Flange effect gets its name from a studio technique that sums two synchronous magnetic-
tape recorder signals playing identical material. The recording engineer places the thumb on one
tape flange to bring the two recorders slightly out of synchronization thus creating the effect. In
the 70’s the Flange effect was emulated by analog phase shifting networks consisting of a cascade
of allpass filters having time-varying elements. Implemented in this manner, the problem of
delaying a signal by brute force was overcome. These devices were called Phasers and remain
popular because the spectral troughs are not spaced harmonically, in general. While second-order
allpass filter sections of the cascade offer more control [J.O.Smith] over trough frequency and
selectivity, the Phaser is well emulated in DSP using only first-order sections [Hartmann] [Beigel]
(which may be quieter in terms of truncation noise performance). The spectral troughs are
harmonically stretched in the first-order case. In any case, global feedback enhances the effect,
affecting perceived trough depth.

90

 Table Chorus
Effect blend feedforward feedback
industry standard Chorus 1.0 0.7071 0.0
White Chorus 0.7071 1.0 0.7071
Flanger 0.7071 0.7071 -0.7071

The settings in Table Chorus refer to Figure Chorus; they are given as typical values and are
not unique, although the White Chorus settings approximate an allpass response. The
maximum magnitude of feedback is 0.9999999 (q23) for stability. When the circuit performs
Flanging, the blend and feedforward coefficients must be equal for maximum trough depth.

For the White Chorus effect, introduced here, a typical value of the blend coefficient in
Figure Chorus would be 0.7071 and remains fixed, for the most part. A typical delay
center (NOMINAL_DELAY) would be 600 samples at 44.1�kHz, and a typical peak delay
excursion (CHORUS_WIDTH) of the modulation about the delay center would be
approximately 550 samples. A typical rate of modulation would be about 0.15 Hz.

fixed tap
same tap center

tap center

x

-
.

blend

feedback

feedforward

modulating tap

Ζ-2048

x

x

Figure Chorus. The industry standard Chorus effect circuit with feedback.
The strong flange zone is indicated; the leftmost (0+ delay) portion of the delayline.

∑∑

Design
This circuit in Figure Chorus produces a brilliant tone quality having pleasing movement with
a little ambience. Used singly, this circuit’s effect is sometimes called Doubling. Typical
Chorus design configurations see two such circuits, however, a quadrature oscillator providing

the modulation; each circuit having 90o relative phase displacement.79 Each circuit signal
would typically be output to separate channels; this configuration is successfully applied to
mono, stereo, or panned input signals. Time delay differences between two output channels
carrying coherent signals emit localization cues known as the Haas effect. While musically
interesting, it is a persistent source of irritation for recording engineers attempting to accurately
place a musical instrument into a mix. For this reason it is prudent to place a stereo field
control (or a panning circuit) at the output of any Chorus algorithm.

79The section on Sinusoidal Oscillators discloses highly efficient quadrature designs.

91

Flanger design would normally incorporate modulation of the same phase in each channel. The
strong flange zone occupies approximately the first 1�ms of the delayline. The viable regions
of delay excursion for the Chorus and Flanger effects overlap, however, and can easily be
determined by ear.

It is important to keep the Chorus circuit free of nonlinearity for those many professional
guitarists who want this effect as clean and simple as possible. For those particular
guitarists, simplicity of the Chorus design is a virtue as they use this effect most all of the
time. Allpass interpolation80 for delay modulation becomes critical to the transparency
of any Chorus design. Recall that Linear interpolation is a time-varying lowpass filtering
operation. Indeed, a multi-voice Chorus design employing Linear interpolation subjects
the signal to significantly audible amounts of low-pass filtering. We term the Chorus
White when both negative feedback and Allpass interpolation are employed to minimize
the spectral aberration that would be consequent in the absence of these two signal
processing techniques.

Flangers, on the other hand, can benefit from a mild nonlinearity introduced into the
signal path in front of the effect, so that the induced troughs see a more rich signal source.
But Allpass interpolation is also critical to successful Flanger design so that the
dynamically delayed signal remains unfiltered. Lowpass filtering of the delayed signal
via Linear interpolation would reduce the depth of the high frequency troughs; that is
undesirable for a good Flanger.

Caveat
For particular types of input material (e.g., percussive signals) and subjectively long
nominal delays (10�ms), the feedback path can introduce echoes which are
objectionable.81 The level of objection is somehow related to the particular form of
interpolation. The use of the Allpass interpolator with coefficient warping (sw.eq) seems
to mitigate the echoes’ aural impact.82 In any event, one can always turn down the
feedback knob in this circumstance.

80as discussed in the Application of the same name,
81The old bathroom reverberator.
82We apologize for being unable to characterize this problem more accurately at this time.

92

Vibrato
One might be interested to know the amount of pitch change when the blend and
feedback coefficients are 0; i.e., when the circuit is made to produce Vibrato.83 Without
loss of generality we may consider the Vibrato applied to a sinusoid of arbitrary
amplitude, A, and radian frequency, ω. Using terminology established for the
Interpolation Applications, from (lipdf) we write,

x((n - m.frac)T) = A sin(ω (n - m.frac) T)
 = A sin(ω (n - (NOMINAL_DELAY + yqn CHORUS_WIDTH)) T)

where, yqn = sin(ωε n T), is the LFO and ωε is the radian rate of modulation

(2π�Freq; see the interpolation program called Linear). NOMINAL_DELAY and
CHORUS_WIDTH are expressed in units of samples.

The instantaneous radian frequency is:

Ω = ∂(ω (n - (NOMINAL_DELAY + yqn CHORUS_WIDTH)) T) / (T ∂n)

 = ω (1 - CHORUS_WIDTH ωε T cos(ωε n T))

Note that if the LFO were triangular, then the instantaneous frequency would be
piecewise constant which is unnatural, hence not desirable.

Pitch Change Ratio = Ω / ω
 = 1 - CHORUS_WIDTH ωε T cos(ωε n T)

This tells us that the pitch change is time-varying and proportional to the modulation
frequency and the sample period, T.

Pitch Change Ratio extrema = 1 ± CHORUS_WIDTH ωε T

83Note that this implementation of Vibrato maintains the signal’s macro-temporal features.

93

Detune Effect
There is yet another related effect which is outside the scope of the present discussion.
Yet, its sonic impact is so powerful that it deserves mention; that is the Detune effect. It
is accomplished in DSP employing the class of algorithm known as the Pitch Shifter.
[Dattorro2400] The Detune algorithm class employs a splicing mechanism84 (when

implemented in the time domain; see Appendix IX) to maintain the macro-temporal signal
features while shifting the pitch by a fixed microtonal amount using some form of
interpolation. The pitch shifted signal is then mixed with the original. The result is often
described by musicians as subjectively ‘fattening’ the sound.

This Detune effect occurs naturally and is built-in to instruments such as the pianoforte,
mandolin, and twelve-string guitar. It accounts for one salient character of each
instrument’s sound. The Chorus and Detune effects are sonically quite different, the
latter algorithm being more difficult to implement properly. The primary distinguishing
feature of the two is that the pitch is necessarily modulating in the Chorus effect because
of the means of implementation.

The reader should also be aware that contemporary sampling music synthesizers85 often
emulate Detuning through the use of Pitch Change, which in many cases is undesirable.

84unlike Pitch Change algorithms which have been the focus of our look into interpolation, and
which are actually the topic of [Rossum] despite its title. The temporal features of the original
signal are maintained in a pitch shifted replica; that is what distinguishes Pitch Shifting from
Pitch Changing by fixed amounts. While many Pitch Shift algorithms employ delayline
interpolation, the Lexicon Model 2400 Stereo Audio Time Compressor/Expander (designed by
the author in 1986 and still in production [Dattorro2400]) sidestepped the need for interpolation
by incorporating a variable-rate A/D conversion system. In that design, the D/A circuitry is fixed
rate, the whole instrument operating in real time on pre-recorded material.
85rather sampler-type, which we distinguish from wavetable-type synthesizers,

94

3. The Low-Frequency Sinusoidal Oscillator
The low frequency sinusoidal oscillator (LFO) is ubiquitous in effect design. There are
several implementation options:
1) direct form,
2) coupled form,
3) first modified coupled form,
4) second modified coupled form,
5) normalized waveguide.

The direct form oscillator is the most efficient option requiring only one multiply, but it
is noisy unless truncation error feedback is used. [Haija/Ibrahim] [Dattorro] The error
feedback can be implemented using only one or two adds, so it is attractive. The single
coefficient γ requires high resolution for very low frequencies of oscillation, however.

cos(ω)

Ζ-1

Ζ-1

 y1[n]

 y2[n]

 y1[n+1]

∑

Figure DF1. Direct Form Sinusoidal Oscillator.

y1[n] =
1

 y1[0]

sin(n ω) - y2[0])(

y2[n] =
1

 y1[0]

sin(n ω) + y2[0])(

sin(ω)

sin(ω)

 γ = -2

x

-

y1[n+1] = -γ y1[n] - y2[n]

y2[n+1] = y1[n]{

sin(ω + n ω)

sin(ω - n ω)

γ

 ; 0 < ω < π

-

2
poles = -γ +/− j √1 − γ2

4

95

The direct form oscillator was analyzed using State-Variable theory,86 the results of
which are shown in Figure�DF1. This type of analysis excels at finding the zero input
response (the ZIR). (See Appendix X.) The selected output is expressed in terms of the
initial conditions of all the memory elements, the state variables. This method of analysis
differs considerably from the technique of solving the recursive difference equation for
the selected output, in so far as the initial conditions required by the latter are of the
output itself. In the case of the direct form, these two methods coincide.

Obviously, by choosing the initial states y1[0]�=�0 and y2[0]�=�-sin(ω), we get

y1[n] = sin(n ω)

There is no quadrature sinusoid at any node. But by choosing, for example, y1[0]�=�1,

and y2[0]�=�cos(ω), we get

y1[n] = (1/sin(ω)) (sin(ω + n ω) - cos(ω) sin (n ω)) = cos(n ω)

The direct form oscillator is hyperstable87 under coefficient quantization as proven by
the equation for the pole locations in the z-plane in Figure DF1. Regardless of the
quantization of γ, the pole radii are exactly 1 as determined from the pole magnitude.
Any instability in the sinusoidal waveform can only be attributed to signal quantization
effects, primarily in the form of truncation error in this recursive topology.

One must be cognizant of the relationship between oscillation frequency and amplitude
when using the different oscillators presented in this section. The equations of
Figure�DF1 predict that when frequency is changed via γ after the oscillator has been
running for some time, amplitude will deviate, in general. One theoretically overcomes
this problem by simultaneously updating the memory elements (the states), but this can
be difficult in practice depending upon the particular oscillator topology.

The direct form oscillator circuit can be derived from one trigonometric identity;88 viz.,

sin((n+1)ω) = cos(ω) sin(n ω) + sin(ω) cos(n ω)
sin((n-1)ω) = cos(ω) sin(n ω) - sin(ω) cos(n ω)

where ω is the normalized radian frequency of oscillation (2πf�T) controlled by γ
which must be in q22 binary-radix format for ESP2. Summing the two equations yields:

sin((n+1)ω) = 2 cos(ω) sin(n ω) - sin((n-1)ω)

86following the analysis presented in [Gordon/Smith] for the coupled form and the second
modified coupled form,
87We shall define ’hyperstable’ in this context to mean stability of oscillation in the face of
coefficient quantization. The effect of signal quantization in networks is not included in this
definition.
88This was pointed out to the author by Michael Chen.

96

Making the substitution, y1[n] <- sin(n ω)�, we get

y1[n+1] = 2 cos(ω) y1[n] - y1[n-1]

which is the difference equation for the circuit.89

The coupled form is an established topology known by several names including the
Rader/Gold, and normal form. The coupled form is a state-space digital filter structure
and is one of the foremost contributions of the branch of Linear System theory known as
State-Variable analysis. The coupled form has many attributes including low truncation
noise and low coefficient sensitivity, respectively due to signal and coefficient
quantization within a finite precision machine. [Jackson,ch.4.4] The latter attribute
makes tuning easier. Its primary detriment is that four multiplys are required in its
unmodified form.

The unmodified coupled form in Figure X (a) shows the four multiplys required for
oscillation, including two cos(ω) coefficients. Using all four coefficients, the pole
locations are ideally on the unit circle. It can be deduced from the equations given in
Figure X (a) that for any initial states (y[0], yq[0]) the outputs at y[n] and yq[n] yield

quadrature sinusoids. But when the ideal filter coefficients become quantized to their
representation in a finite precision machine, the pole locations are perturbed in a direction
dependent upon the polarity of the coefficient quantization error.90 The impact of this is
that the pole radii are no longer exactly 1, so the oscillator amplitude either decays to zero
or clips (assuming automatic saturation arithmetic) after some time has past. We do not
relish the four multiply requirement and we recall that the direct form does not suffer
from this particular problem. This is because the direct form pole radii can be fixed by
the second-order recursive coefficient [Dattorro,(30)] which is always precisely set to 1
for our present application.

The coupled form has a simpler trigonometric derivation, but uses two identities; viz.,

cos((n+1)ω) = cos(ω) cos(n ω) - sin(ω) sin(n ω)

sin((n+1)ω) = sin(ω) cos(n ω) + cos(ω) sin(n ω)

Making the substitutions, y[n] <- sin(n ω), yq[n] <- cos(n ω), we get

yq[n+1] = cos(ω) yq[n] - sin(ω) y[n]

y[n+1] = sin(ω) yq[n] + cos(ω) y[n]

89This also happens to be the generating recurrence relation of the Chebyshev polynomials;
Tn+1(x) - 2x Tn(x) + Tn-1(x) = 0. [Hamming,pg.473]
90The availability of the ROUND(), INT(), or BTRUNC() in-line assembler truncation functions
now warrants appreciation.

97

cos(ω)

)
n1

 ε = ; ω < π/2

cos(ω)

Ζ-1

Ζ-1

 yq[n]

 y[n]

 yq[n+1]

 y[n+1]

∑

∑

xε
εx

-

Figure X. (a) Coupled Form (Four Multiplier) Sinusoidal Oscillator.

 (b) First Modified Coupled Form (Two Multiplier) Low Frequency Oscillator.

x

x

yq[n+1] = yq[n] - ε y[n]

y[n+1] = ε yq[n] + y[n]{

sin(ω)

cos(ω)

 yq[0]

sin(n ω) + y[0])(

cos(n ω)(

yq[n+1] = yq[n] - ε y[n]

y[n+1] = ε yq[n] + y[n]{

yq[n] = yq[0]

cos(n ω)

sin(n ω) - y[0]

y[n] = yq[0]

sin(n ω) + y[0]

cos(n ω)

 ε =
sin(ω) ; ω < π

(a)

(b)

yq[n] = yq[0]

cos(n ω)

sin(n ω) - y[0])(

poles = 1 +/- j ε

poles = +/- j ε

cos(ω)
cos(ω)

cos(ω)

y[n] =

)
n

(1

cos(ω) 1~~

cos(ω) 1~~

98

We will make a modified coupled form digital filter behave as an oscillator by placing its
poles either slightly beyond or precisely on the unit circle in the z-plane, even in the
presence of coefficient quantization error. We will see that both of these choices of pole
locations can be achieved using only two multiplys, and both have useful purposes.

If the coupled form oscillator is employed as an LFO, we make the observation that the
two cos(ω) coefficients are close to 1. If we set them to 1 permanently, we eliminate
two multiplys and arrive at the first modified coupled form in Figure X (b). Using the
first modified coupled form, the quadrature sinusoids at y[n] and yq[n] will always clip

somewhat (assuming saturation arithmetic) because the pole radii are in excess of unity.
When the oscillator frequency is very low, the clipping will be slight.

The advantage of this first modified coupled form implementation is that its output
amplitude is at least unity, even after frequency is abruptly changed. The oscillator never
blows up, as the equations in Figure X (b) would predict, because of the saturation
nonlinearity built into the ESP2 computation units. The detriment to the use of this
oscillator is that the tuning frequency is practically restricted to a portion of the first
quadrant in the z-plane.91 This modified coupled form of the oscillator would be chosen
when the criteria for selection of an LFO does not include sinusoid purity, but full
amplitude stable quadrature signals are a must.

The second modified coupled form, first presented in [Gordon/Smith], is shown in
Figure�X+1. This oscillator produces a high purity sinusoid at the two outputs, y[n] and
yq[n], whose noise floor is low enough to characterize D/A converters. The two outputs

are no longer exactly in quadrature as before,92 but the oscillator is hyperstable because
the pole radii are exactly 1 even when epsilon is quantized.93 The tradeoff for this
stability is the linking of amplitude to frequency of oscillation as seen in the equations in
Figure�X+1. By observation of the poles, the tuning frequency now spans DC to Nyquist
as epsilon goes from 0 to 2, and so the range of oscillation is not restricted to low
frequencies as in the first modified coupled form.

We have found as predicted, using the second modified coupled form, that when epsilon
(the frequency control) is abruptly changed, the oscillator amplitude will change itself to
a new value. This is because we ignore the new initial states, yq[0] and y[0], at the

time of the frequency change; i.e., no attempt is made to adjust them. We observed these
consequent deviations in amplitude and empirically found them to be less than a decibel
over a very useful range of frequency for an LFO. It was never found necessary, in any
of our applications, to compensate for these small changes in amplitude. The built-in
saturation arithmetic within the ESP2 computation units eliminates any possibility of
long-term clipping, completely.

91This restriction is overcome in practice by running the oscillator twice as fast, which means
twice the code.
92From the equations in Figure X+1, it can be shown trigonometrically for any initial states that
the two sinusoids are in a near quadrature relationship; being off by exactly 1/2 sample at any
frequency of oscillation. This was first pointed out to the author by Timothy S. Stilson.
93Like the direct form, any instability in the sinusoidal waveform can only be attributed to signal
quantization effects, primarily in the form of truncation error in this recursive topology.

99

cos(ω)

cos(n ω + ω)

cos(n ω - ω)

2

yq[n+1] = yq[n] - ε y[n]

y[n+1] = ε yq[n+1] + y[n]

Ζ-1

Ζ-1

 yq[n]

 y[n]

 yq[n+1]

 y[n+1]

∑

∑

x ε
εx

-

Figure X+1. Gordon/Smith Sinusoidal Oscillator.
a.k.a. Second Modified Coupled Form (Two Multiplier) Oscillator.

{

2
yq[n] =

1
 yq[0]

sin(n ω) - y[0])(

y[n] =
1

 yq[0]

sin(n ω) + y[0])(

cos(ω)

2

2

 ε = 2

sin(ω) ; ω < π

2 2
poles = 1 - ε2

 +/− j ε
4

√1 − ε2

100

The ideal digital integrators, 1/(1 - z-1), have never presented a problem in practice
because there is a zero of transmission at z=1 (DC) across each embedded integrator
from its input to its output. This comment applies to both modified coupled forms.

The second modified coupled form oscillator ESP2 code, shown within the Linear
Interpolation Application, is written such that if several oscillator routines were cascaded,
the interleaved code resulting would be most efficient in terms of program space. The
cascaded routines would then average about two program lines per oscillator. That code
for one oscillator is reproduced below:

!****** hyperstable near-quadrature oscillator (second modified coupled form) ******
NOP MOV yqn > MACP

NOP MOV yn > MACP
MACP - epsilon X yn > yqn

MACP + epsilon X yqn > yn

If only one oscillator is required, the code shown may be compressed to occupy only
three program lines as demonstrated in the FFT Radix-4 Application.

101

Real-Time Measure of Sinusoid Purity
We made measurements of S/(THD+N) for the direct form and the second modified
coupled form oscillator, each running at a sample rate of 69818.181�Hz in a real-time
ESP2 hardware development system. The measurements were taken using an Audio
Precision, Inc., analog signal analyzer. For each oscillator, the two parameters are
frequency of oscillation and the number of bits in the two’s complement signal path.
Binary truncation post-accumulation is used to limit the path-width. The results are
tabulated in Table�OSCTHD:

 Table OSCTHD. Measurement of oscillator S/(THD+N) .
 direct form second modified coupled form
no. bits freq. no. bits freq.
 20Hz 100Hz 1000Hz 20Hz 100Hz 1000Hz
24 60 dB 75 86 dB 24 88 dB 86 86 dB

23 58 75 86 23 88 86 86

22 53 73 85 22 88 86 86

21 45 70 84 21 87 86 86

20 37 64 84 20 87 86 86

19 flatline 60 79 19 86 85 85

18 58 74 18 85 84 85

17 50 73 17 79 80 84

16 40 67 16 70 73 82

15 25 61 15 67 68 78

14 flatline 56 14 59 65 73

13 54 13 47 61 68

12 45 12 40 60 62

11 39 11 25 50 56

10 37 10 flatline 45 48

9 23 9 30 43

8 19 dB 8 21 42

7 flatline 7 flatline 35

6 6 34

5 5 28

4 4 24 dB

3 3 flatline

2 2

1 1

The hardware system total noise was roughly -86 dB, relative to full scale, which
prevented measurements significantly below that level. The readings at -88�dB are
probably due to a system signal-transfer anomaly. The term flatline in Table OSCTHD
refers to a complete lack of any form of oscillation as viewed on an oscilloscope.

102

purity of direct vs. coupled form
We now postulate the reason pertaining to the foregone conclusion from the empirical
data that the direct form oscillator is inferior to the second modified coupled form: It is
that the latter has truncation error feedback built into its topology. We state this in an
equivalent way; each noise transfer of the second modified coupled form has zeroes of
transfer, whereas that of the direct form has not. Figure�X+1n shows how truncation
noise sources (e[n] and eq[n]) are conceptually inserted into a circuit in a linear fashion.

[Jackson] [Dattorro] Each deterministic noise source in a contemporary DSP chip resides
in front of a multiplier because that is the only location where truncation is demanded by
the architecture.94

Ζ-1

Ζ-1

 yq[n]

 y[n]

 yq[n+1]

 y[n+1]

∑

∑

x ε

εx
-

Figure X+1n. Second Modified Coupled Form Sinusoidal Oscillator showing noise sources.

∑

∑

e[n]
-

eq[n]

-

Each noise source can make its way to either of two outputs for this coupled topology in
Figure�X+1n: yq[n] or y[n]. In each case, the noise transfer either picks up a zero at

DC, or is multiplied by ε2 which yields the same effect. In order for the direct form
oscillator to perform as well, truncation error feedback must be employed to introduce a
zero into its deterministic noise transfer, as stated at the outset.

94Were we to instead place the noise sources following the accumulators, for truncation post-
accumulation, we would reach similar conclusions in the analysis of this topology. Again, the
ideal digital integrators would pose no practical problem.

103

purity vs. frequency
The data in Table OSCTHD indicates that signal purity is a function of oscillator
frequency for both topologies. Binary truncation noise can be modelled like quantization
noise. [Opp/Sch,pg.353] Gray demonstrates [Gray,ch.6.3] how the quantization noise of
a pure sinusoid is not characteristically white regardless of amplitude or frequency. He
explains that the deterministic noise spectrum is in fact discrete, because the signal is
sinusoidal,95 and that the noise spectral components exist at odd harmonics of the
sinusoid frequency including the fundamental.

Gray’s references indicate that these results have been known for decades. The
conclusions drawn can be generalized to the present truncation noise situation depicted in
Figure�X+1n:

e[n] = ejmωn bm (en0)∑
m=-∞

 ∞

m odd

where ω is the (fundamental) frequency of oscillation. Equation (en0) has the form of a
continuous-time complex Fourier series, then sampled in time. The Fourier series
coefficients, bm�, form a conjugate-symmetric set, thus e[n] is real-valued. The
expression for eq[n] is similar. Each bm will be some function of weighted ordinary

Bessel functions of integer order m and real argument.

Thus far, we have been presenting all the equations for oscillation in terms of the zero
input response (ZIR). But the noise model in Figure�X+1n suggests that the noise
sources, e[n] and eq[n], are subject to the zero state response (ZSR) of the network. The

ZSR of the oscillator is precisely that of an integrator centered (in the frequency domain) at
the frequency of oscillation. Any noise energy in the vicinity of the oscillation frequency
should cause the oscillator to blow up. This does not happen in practice because of the
saturation nonlinearity built into most contemporary DSP chips. The injected noise just
causes phase jitter and amplitude perturbations which decrease signal purity.96 Signal
quantization in a recursive network, then, is a secondary form of instability. The primary
determinant of stability is pole location, which is why we have been concerned with the
quantization of filter coefficients.

95to be more precise; because the analog signal, from which the sampled signal is derived, has a
discrete spectrum,
96For this reason it is recommended to run all the oscillators at full-scale amplitude and to place
a volume knob at the output.

104

The data in Table OSCTHD suggests that either implementation of the
oscillator/integrator has constant (noise equivalent)97 bandwidth, independent of center
frequency. We intuit this because it appears that the quantity of noise goes up as center
frequency moves down. Perhaps when the oscillation frequency is low, the more
powerful harmonics of the noise spectrum are clustered closer together in the vicinity of
the center frequency. Hence the integrator becomes more disturbed, thus the THD+N
will be worse. A simpler explanation might be frequency domain foldover of the
integrator transfer near DC.

chaotic behavior
The direct form oscillator at 20 Hz is fascinating to view, however, when the signal path
bit-width is 20 bits (just before flatline). The oscillation metamorphoses from sinusoidal to
nearly triangular, and back; this chaotic but stable process occurs over periods of real
time on the order of minutes. During each epoch, the oscillation frequency can be
observed to change by as much as 1/2 the desired frequency.

It should be pointed out that although we show no data for very low frequencies in
Table�OSCTHD, the first and second modified coupled form sinusoidal oscillators are
routinely called upon to produce frequencies less than 1�Hz (0.1 Hz typical).

97defined in [Harris] [Cooper]

105

More Recent Developments
Smith and Cook subsequently disclosed a lattice topology for sustained oscillation in
[Smith/Cook] which is claimed more suitable for VLSI implementation. The oscillator
shown in Figure�SC is called the normalized waveguide oscillator because it was
derived as a spin-off from Smith’s results in the theory and implementation of digital
waveguides.

y1[n+1] = cos(ωn) y1[n] + (cos(ωn)+1) Gn y2[n]

y2[n+1] = (cos(ωn)-1) y1[n] + cos(ωn) Gn y2[n]

Ζ-1 Ζ-1
 y2[n]

 y1[n]

∑

∑

xx

Figure SC. Smith/Cook Normalized Waveguide Sinusoidal Oscillator.

{

∑

-

cos(ωn)Gn

 y1[n+1]

y1[n] = y1[0] cos(n ωn) - y2G[0] cot(ωn/2) sin(n ωn)

y2[n] = y1[0] tan(ωn/2) sin(n ωn) + y2G[0] cos(n ωn)

Gn =
tan(ωn/2)

tan(ωn-1/2)
; 0 < ωn < π/2 poles = cos(ωn) +/− j 1 - cos2(ωn)√

 y2[n+1]

(oscSC)

106

Although this design recaptures the quadrature relationship of the sinusoids appearing at
the circuit outputs, the primary contribution of this topology to the field of oscillator
design is that it solves the amplitude deviation problem.98 It is a remarkable distinction
that this sinusoidal oscillator possesses: This normalized waveguide oscillator is
designed for instantaneous change in frequency without concomitant change in
amplitude,99 hence the new notation (ωn) showing frequency as a function of the time

index. The frequency change must be performed properly, however. Toward this end,
the amplitude coefficient Gn is introduced, and specified to deviate from 1 only at the

time of the occurrence of the frequency change;100 i.e., it is an amplitude compensation
factor which is engaged for one sample period. The elegance of the Smith/Cook solution
rests in the fact that knowledge of the state time (the precise value of n) at the occurrence
is not required, neither is knowledge of the state values. All that is required is knowledge
of the previous frequency.

Whenever frequency is changed, the control Gn is all that is required to maintain
constant amplitude in the oscillator circuit; i.e., the memory elements need never be
adjusted in the implementation. For the analytical equation (oscSC) to remain valid,
however, y2G[0] and y1[0] must be re-evaluated whenever Gn deviates;
 y1[0] <- y1[n0]
 y2G[0] <- y2[n0] Gn0

 = y2G[n0] (oscG)

where n0 is the time index at the change; n0≠0. It is important that we interpret equation
(oscSC) properly so that we may show the technique on paper. We will now demonstrate
the validity of these assertions by example:

98It is evident from the equations in Figure SC that sinusoid amplitude is linked to the
frequency of oscillation. This is similar to the situation for all the oscillators presented, except for
the Rader/Gold coupled form.
99Because we are dealing with the ZIR, frequency change can be instantaneous in all the
oscillators presented. But the Smith/Cook oscillator is the first one to deal effectively with
amplitude correction at the instant of the change.
100 Gn is not at all involved with frequency tuning. The special case G0 = 1. But Gn can be

greater than 1, albeit momentarily, which will necessitate at least q22 arithmetic.

107

example
Suppose that at absolute time n=0, we are given ω0=ω-1�, y1[0]=1, and y2G[0]=0.

Then while Gn remains static we expect for n = 0 -> ∞�,
 y1[n] = cos(n ω0) (osc0)

 y2[n] = tan(ω0/2) sin(n ω0)

Suppose we suddenly freeze time at n=n0+�. At this time we desire a change in
frequency which is effectively to take place at n=n0�. We do this by changing the one

tuning coefficient from cos(ω0) to cos(ωn0
) at time n0�, and by letting Gn deviate

from 1 but only for one sample time at n0�;

 Gn0
 = tan(ωn0

/2) / tan(ωn0-1/2) (oscG2)

We then have the new initial states from (osc0) and (oscG):
 ωn0-1 = ω0

 y1[n0] = cos(n0 ωn0-1)

 y2G[n0] = tan(ωn0
/2) sin(n0 ωn0-1) (osc1)

Using the new initial states (osc1), we find from (oscSC) that,
y1[n] = cos(n0 ωn0-1) cos((n-n0)ωn0

) - sin(n0 ωn0-1) sin((n-n0)ωn0
)

y2[n] = cos(n0 ωn0-1) tan(ωn0
/2) sin((n-n0)ωn0

) + tan(ωn0
/2) sin(n0 ωn0-1) cos((n-n0)ωn0

)

 ;for n=n0 -> ∞ (osc2)
Equation (osc2) simplifies by trigonometric identity to,
 y1[n] = cos(n0 ωn0-1 + (n-n0)ωn0

)

 y2[n] = tan(ωn0
/2) sin(n0 ωn0-1 + (n-n0)ωn0

) ;for n=n0 -> ∞ (osc3)

In both outputs the phase is correct in light of the new starting time. Comparing (osc3) to
(osc0), we see that the amplitude of y1[n] remains as it was which is the desired result.
To successfully change the frequency again and again, the same procedure can be
repeated to derive similar results. But the amplitude of y2[n] has changed from its

original value of tan(ω0/2). So, in this particular example we have not maintained the

amplitude of y2[n] although we have managed to keep the amplitude of y1[n] constant
throughout the process of changing the frequency of oscillation.

It is interesting to note that Smith and Cook originally derived the same result using
principles of energy conservation across transformer-coupled waveguides.

108

stability
The Smith/Cook oscillator is hyperstable because there is only one tuning coefficient,
cos(ωn). The equation for the poles in Figure�SC shows that even under coefficient

quantization, the pole magnitude is always unity.101 Like the direct form, however, the
single tuning coefficient requires high resolution at very low frequencies of oscillation.
Inaccuracy in the representation of Gn when it deviates cannot affect the tuning
frequency.

truncation noise
We will only permit speculation regarding the noise performance of the Smith/Cook
oscillator as compared to the (Gordon/Smith) second modified coupled form, as we have
no actual measurements of THD+N to bolster any analytical findings.

Recalling our discussion ‘purity of direct vs. coupled form’, there the importance of
zeroes in the deterministic noise transfer function was revealed. We have not been able
to devise an implementation that would place a zero into the steady state truncation noise
transfer (amplitude coefficient Gn set to 1) while maintaining freedom from amplitude

deviation across a change in frequency.102

Hence we speculate that the noise performance of the Smith/Cook sinusoidal oscillator is
not as good as that of the Gordon/Smith.

miscellany
Some other articles relevant to the field of oscillator design are [Fliege/Wintermantel] and
[Thoen].

101Like the direct form, any instability in the sinusoidal waveform can only be attributed to signal
quantization effects, primarily in the form of truncation error in this recursive topology.
102This topic is worthy of further research, however. One complicating circumstance is the
potentially large disparity in amplitude between the two outputs, as shown by (oscSC).

109

4. External Memory Host Access (Paradigm and Utility)
The ESP2 does not provide direct access of external memory data by the system host at
run-time, nor during halt, nor suspension. We present here a typical scheme for vectoring
a running ESP2 application to a simple utility program which makes the desired access at
the sample rate.103 The ESP2 acts as intermediary.

We create a new program paradigm for a sample-synchronous application beyond which
the utility will be overlaid at run-time by a relocating downloader driven by the system
host.104 We need a relocating downloader in order to select the start of the utility
anywhere within instruction memory.

We write the utility so that it needs to know as little as possible about the running
application. But we do need to know the relative address offset within the particular
region of external memory to which to begin access, and we need a few registers globally
reserved for the utility program. This information can be shared by all running
applications, and we conveniently place it in an include file.

!************************* #include file.h contents ****************************
DEFCONST GLOBAL

 CLK = 40.e6 ! ESP2 system clock.

 Fs = 44100. ! system sample rate.

 T_LOCALE = $800000 ! fixed but arbitrary, agreed on by convention.

 OVERLAY = 10 ! overlay-instruction budget .

 AUDIO = 3*Fs ! 3 seconds.
 ESP_HALT = $2 ! see HOST_CNTL_SPR in Chip Spec.

DEFREGION T @T_LOCALE GLOBAL ! region desired for host/external memory transfer.
 capture[2*AUDIO] ! A few seconds of stereo audio.

 sigmoid_table[257] ! Table used by a lot of programs.
 inverse_table[512]
 xmp @$2ff ! external memory pointer used by utility.

DEFGPR GLOBAL
 host_cntl_msk = ESP_HALT @$ff ! used to mask HOST_CNTL_SPR.

 indirb @$fe ! used to save INDIRB of application.

!***

103Note that the elimination of the BIOZ instruction from the application program paradigm,
presented shortly, would permit the host external memory access at a much higher rate.
104The download, by the system host, of new instructions into ESP2 instruction memory always
occurs at the instruction rate.

110

Resource Management
We assume that any DIL or DOL required by the utility’s AGEN operations will be free
at the instant that the utility is executed. This is a reasonable assumption and allows
sharing of that resource.

The utility can use a few instructions in any unused instruction space. Recall that at a
sample rate of 44.1 kHz, only 226 ESP2 instruction lines can be executed per sample
period. So, there will likely be some instructions free that we will not need to take away
from the application resource.

We will reserve two GPRs; one to hold a semaphore mask (host_cntl_msk) and one to save
the application’s return address (indirb). Finally, we will need a dedicated and reserved
AOR (xmp) which, together with the region BASEr, will point to the desired location in
external memory. The AOR, xmp, is a relative address offset into the region, T in this
case. It can be initialized, by the host, to the root address offset of any one of the
declared external memory arrays.
These three registers will only need to be initialized once throughout the use of the utility.

4.1. ESP2 External Memory Host Access Application Program Paradigm
! JonD, ESP2, 1/1/95.

PROGRAM Transfer

#include file.h

PROGSIZE <= INT(CLK/(4.*Fs)) - OVERLAY !compensation for execute time, not size

DEFSPR LOCAL
 INDIRB = application
 PC = init
 REPT_CNT = 0
 SER_CONF = $007fff ! see the Chip Spec.
 HARD_CONF = $008400

CODE
!********************* begin application ***************************************
init: NOP
 .
application: NOP ! JMP and return here

 .
 .
 .
 NOP JMP INDIRECT
 NOP BIOZ
!******************* end application program ************************************

111

Procedure
We assume that this application has been running for some time. The SPR INDIRB
holds the PC value of the label called application as evidenced by the declarations. The
host queries this register and saves its contents in the global GPR called indirb. The host
takes the ESP_HALT_EN and ESP_HALT bits, of the HOST_CNTL interface register,
low.

After the host overlays the utility, it overwrites INDIRB with the desired PC location of
the start of the utility. When the JMP is encountered thereafter, it will be vectored to our
little utility. The host initializes the AOR, xmp, to the desired address offset into the
region T in external memory (see the chart in the Discussion).

When a semaphore is taken high by the host, the utility will be activated for a single
stereo access. The utility resets the semaphore. When the host is finished accessing
external memory, it will set INDIRB back to its original contents thus bypassing the
utility.

4.2. ESP2 External Memory Host Access Utility
! JonD, ESP2, 1/2/95.

PROGRAM Utility

#include file.h

PROGSIZE <= OVERLAY

CODE
!************************** begin WR utility *******************************
utility:NOP AND host_cntl_msk, HOST_CNTL_SPR > ZERO

 NOP JS push, NZ > CMR
 MOV indirb > PCSTACK0 {ADDV host_cntl_msk, xmp}
push:{MOV HOST_GPR_DATA > *xmp(+)} RS, NZ > CMR
 {MOV HOST_ESP_FACE > *xmp} {XOR host_cntl_msk, HOST_CNTL_SPR}
!**************************** end utility **********************************

112

Discussion of Utility
The JS in conjunction with the load of PCSTACK0 constitutes a push of indirb onto the
hardware stack. The GPR, indirb, holds the PC value of the label application, and was
loaded by the system host during initialization of this procedure. This is done so that RS
will know where to return to within the application. JS and RS each have one instruction
cycle execution latency, and they are unconditionally executed. This little utility is called
at the sample rate as part of the running application which is never stalled.

The only unconventional usage within the utility is of HOST_CNTL_SPR. This register
is unusual in so far as it appears simultaneously in the host interface register space (as
HOST_CNTL) and in the ESP2 SPR space. This fact makes that register desirable for
fast inter-communication. We sacrifice one of the bits of that register, namely the
ESP_HALT bit, for use as the semaphore. This is possible if the host holds the
ESP_HALT_EN bit low and if we agree that there are no HALT pseudo instructions,
within the application, that we need activated during this time.

The HOST_GPR_DATA and HOST_ESP_FACE SPRs are the only other registers
sharing the attribute of simultaneous appearance in the SPR and host interface register
spaces. This design yields the ultimate speed in register data transfer because the host
does not need to go through the standard host/ESP2-register interface to transfer data
somewhere that the ESP2 can see it directly; namely, from/to these two SPRs. This
means that there is no need for the execution of BIOZ or HOST instructions in order that
the host be able to communicate with a running ESP2 program via these three registers;
and vice versa.105

The HOST_ESP_FACE SPR is uncommitted, but the HOST_GPR_DATA SPR is an
integral part of the host interface for internal register access. We employ both these
registers in our utility because we want stereo data access. Use of HOST_GPR_DATA
here does not preclude standard use of the host/ESP2-register interface, however; this is
because of the semaphore protocol.

As shown, the utility writes stereo data out to external memory. The stereo data are
presumed stored in an interleaved fashion (Left channel, Right channel, Left...), so we
employ to our advantage the AGEN’s Plus-One addressing mode (+). The two
conditional external memory WR are scheduled on the same respective instruction lines
in the AGEN as the lines of requesting MAC code.106 This means that the scheduled
conditional AGEN code experiences the same CCR and CMR as the requesting MAC
code.

105Therefore, we could eliminate the synchronization of this utility to the BIOZ suspension in the
application program so that external memory data transfer would exceed the sample rate.
106We could insure this via the assembler’s forced WR directive, =>�, but that is not necessary
for these isolated five lines because there is little external memory traffic.

113

The GPR, host_cntl_msk, performs double duty as a semaphore mask and as the
increment for our stereo data pointer, the AOR called xmp. The increment to xmp will
become effective for the second current external memory WR because of the assembler
scheduling in the AGEN.

All four last lines of code in the utility, in fact, see the same CCR and CMR. For this
reason, the utility doubles for both RD and WR access. To make the utility perform RD
access, the source and destination in each of the last two lines of MAC unit code are
interchanged. Because of the scheduling, in that case, xmp will not increment in time to
affect the two current external memory RD in the AGEN.

Given these considerations we have the following chart for the proper use of this utility:

 HOST_GPR_DATA HOST_ESP_FACE xmp initialization
WR Left channel data Right channel data address offset - 1
RD Right channel data Left channel data address offset

There is a potential hazard with the host interface when using either of these two SPRs
as MAC unit destination in the RD utility. This hazard comes about because of each
SPRs’ simultaneous appearance in two register spaces. Once again, the hazard is avoided
by the semaphore protocol; the conditionally executed instructions inhibit the destination
unless the semaphore bit is high. Notice the efficiency we have gained through the use of
conditionally executable code, denoted by {}. Without it, we would have the overhead of
jumping around it.

114

5. FFT Radix-4

5.1. FFT Radix-4 C-Program Model
/* This is a validation test of the [Burrus/Parks,pg.113] Radix-4 FFT - JonD 1/15/93 */

/* This is an in-place algorithm. */

/* Modified for zero-indexing. */

#include <stdio.h>

#include <math.h>

#define FREQ 4 /* power of two < 64, to get integral period */

 /* and to keep epsilon q23 */

#define N 256

#define RADIX 4

#define TWIDDLE_SIZE 2*N

double roundint();

double pow2to23, RoundInt24(), TruncInt24();

void main() {

/* FFT */

int N1, N2, M, IE, IA1, IA2, IA3, I1, I2, I3, I, J, K;

long templ;

double CO1, CO2, CO3, SI1, SI2, SI3, XT, YT, R1, R2, R3, R4, S1, S2, S3, S4;

double R1b, R2b, R3b, S1b, S2b, S3b;

double X[N], Y[N];

/* TWIDDLE */

double twopi, Wreal[N], Wimag[N];

/* INPUT SIGNAL */

double epsilon, yn, yqn;

double pi;

/* init */

M = roundint(log((double)N)/log((double)RADIX));

twopi = 8.*atan(1.);

pi = 4.*atan(1.);

pow2to23 = pow(2.0, 23.0);

115

/**************** GENERATE TWIDDLE FACTORS ***************/

/* first value is: 0x7FFFFF */ /* first interleaved value is: 0x000000 */

/* last value is: 0x7FF622 */ /* last interleaved value is: 0xFCDBD5 */

printf("Twiddle factor table size is: %d\n", TWIDDLE_SIZE);

/*for(K=0; K<N; K++) {

Wreal[K] = RoundInt24(cos((K*twopi)/N));

templ = pow2to23*Wreal[K];

if(templ >= 0x00800000L) {

Wreal[K] = TruncInt24(1.0 - pow(2., -23.));

templ = 0x7fffffL;

}

printf("%0.6lx\n", templ & 0xffffffL);

Wimag[K] = RoundInt24(sin((K*twopi)/N));

templ = pow2to23*Wimag[K];

if(templ >= 0x00800000L) {

Wimag[K] = TruncInt24(1.0 - pow(2., -23.));

templ = 0x7fffffL;

}

printf("%0.6lx\n", templ & 0xffffffL);

}*/ /* 24-bit fixed-point, q23 */

for(K=0; K<N; K++) { /* floating-point */

Wreal[K] = cos((K*twopi)/N);

Wimag[K] = sin((K*twopi)/N);

}

/*************** end TWIDDLE *********************************/

/*** GENERATE INPUT SIGNAL ********************************/

epsilon = 2.*sin((pi*FREQ)/N);

yqn = 0.0;

yn = -cos((pi*FREQ)/N);

for(K=0; K<N; K++) {

 X[K] = yqn/2.; /* fixed-point overflow prevention */

 Y[K] = 0.0/2.;

 yqn -= epsilon*yn;

 yn += epsilon*yqn;

}

/*************** end INPUT *********************************/

/*

for(I=0; I<N; I++)

printf("X[%d] = %lf\t Y[%d] = %lf\n", I, X[I], I, Y[I]);

*/

116

/********************* THE FFT *******************************/

N2 = N;

IE = 1;

for(K=0; K<M; K++) {

N1 = N2;

N2 = N2 >> 2;

IA1 = IA2 = IA3 = 0;

for(J=0; J<N2; J++) {

CO1 = Wreal[IA1];

CO2 = Wreal[IA2];

CO3 = Wreal[IA3];

SI1 = Wimag[IA1];

SI2 = Wimag[IA2];

SI3 = Wimag[IA3];

 I1 = J + N2;

I2 = I1 + N2;

I3 = I2 + N2;

for(I=J; I<N; I+=N1) {

R1 = (X[I] + X[I2])/(RADIX/2);

R3 = (X[I] - R1);

S1 = (Y[I] + Y[I2])/(RADIX/2);

S3 = (Y[I] - S1);

R2 = (X[I1] + X[I3])/(RADIX/2);

R4 = (X[I1] - R2);

S2 = (Y[I1] + Y[I3])/(RADIX/2);

S4 = (Y[I1] - S2);

R2b = R1 - R2;

S2b = S1 - S2;

R1b = R3 - S4;

S1b = S3 + R4;

R3b = R3 + S4;

S3b = S3 - R4;

X[I2] = (CO2*R2b + SI2*S2b)/(RADIX/2);

Y[I2] = (CO2*S2b - SI2*R2b)/(RADIX/2);

X[I3] = (CO3*R1b + SI3*S1b)/(RADIX/2);

Y[I3] = (CO3*S1b - SI3*R1b)/(RADIX/2);

X[I1] = (CO1*R3b + SI1*S3b)/(RADIX/2);

Y[I1] = (CO1*S3b - SI1*R3b)/(RADIX/2);

X[I] = (R1 + R2)/(RADIX/2);

Y[I] = (S1 + S2)/(RADIX/2);

I1 += N1;

I2 += N1;

I3 += N1;

}

IA1 += IE;

IA2 = IA1 + IA1;

IA3 = IA2 + IA1;

}

IE = IE << 2;

} /************** end FFT *****************/

117

/******************** Digit Reversal Address/Input Scaling Compensation *******/

J = 0;

N1 = N - 1;

for(I=0; I<N1; I++) {

 if(I >= J) goto label101;

 XT = X[J];

 X[J] = X[I];

 X[I] = XT;

 YT = Y[J];

 Y[J] = Y[I];

 Y[I] = YT;

label101: K = N/RADIX;

label102: if(K*3 > J) goto label103;

J = J - K*3;

K /= RADIX;

goto label102;

label103: J += K;

}

for(I=0; I<N; I++) { /* compensation for earlier fixed-point overflow prevention */

 X[I] *= 2.;

 Y[I] *= 2.;

}

/*********************************** end BIT SWAP ****************/

for(I=0; I<N; I++) {

if((fabs(X[I]) >= 1e-16) || (fabs(Y[I]) >= 1e-16))

 printf("X[%d] = %.16lf\t Y[%d] = %.16lf\n", I, X[I], I, Y[I]);

}

}

/******************** subroutines ***********************************/

/******** replacement for rint() on NeXT O.S. v2.1 *******/

double roundint(double x)

{

if(x >= 0.)return((double)((int)(x + 0.5)));

return((double)((int)(x - 0.5)));

}

double TruncInt24(x)

double x;

{

return(floor(pow2to23*x)/pow2to23);

}

double RoundInt24(x)

double x;

{

return(roundint(pow2to23*x)/pow2to23);

}

118

5.2. FFT Radix-4 ESP2 Program
! FFT Radix-4, single precision. - JonD February 18, ’93 .

! 53 ESP2 instructions. 1024 point complex input @3.245 ms @10 MHz instruction rate.

! Execution 7 times faster than real time @Fs = 44100 Hz.

! THD+N = approx 110 dB regardless of input signal amplitude @ normalized frequency = 4/N .

! Butterflys are scaled so that FFT of full-scale sinusoid produces +/- $400000

! System host must set the ESP_HALT_EN bit of the HOST_CNTL interface register.

PROGRAM FFT4

PROGSIZE = 64 ! - 11

DEFCONST

 XI = #DILF YI3 = #DIL8

 XI2 = #DILE CO1 = #DIL7

 YI = #DILD CO2 = #DIL6

 YI2 = #DILC CO3 = #DIL5

 XI1 = #DILB SI1 = #DIL4

 XI3 = #DILA SI2 = #DIL3

 YI1 = #DIL9 SI3 = #DIL2

 RADIX = 4

 N = 256 ! can’t be 128

 M = INT(LOG(N)/LOG(RADIX))

 FREQ = 4

 Pi = 4.0*ATAN(1.0)

 EPSILON = 2.0*SIN((Pi*FREQ)/N)

 BIG_ONE = (2**24)/N

 REGION_R_LOC = $800000

 REGION_I_LOC = $800400 REGION_T_LOC = $800800

DEFSPR
 PC = begin

 REPT_CNT = 0 DILA DILB DILC DILE DILF
 SER_CONF = $007fff DIL6 DIL7 DIL8 DIL9
 HARD_CONF = $008400 DIL2 DIL3 DIL4 DIL5

DEFGPR

 GLOBAL

epsilon = EPSILON

yqn = 0

yn = -COS((Pi*FREQ)/N)

 LOCAL

J IE R1 R2 R3 R4 S1 S2 S3 S4 R1b R2b R3b S1b S2b S3b

N2 count

Irev IA1 IA2 IA3

119

DEFREGION T @REGION_T_LOC ! TABLE REGION

Twiddle[2*N] ! holds interleaved single precision (cos(), sin()) table;

 ! loaded by system host at download. 0 root required.

IA1_doub ! AORs

 IA2_doub

 IA3_doub

DEFREGION R @REGION_R_LOC ! DELAYLINE REGION

XinArray[N] ! real input, single precision, q23. 0 root required.

 Xoutput[N] ! output array, q23. Loaded post digit-reversal.

XoutPointer

 RevPointer ! digit reverse pointer.

K @$2f9 ! default region is R; used in region I

I I1 N1 ! don’t init any AORs to 0; confusion later with XinArray[0]

 I2 I3

Ir I1r ! to avoid wasting another 2 regions

 I2r I3r

DEFREGION I @REGION_I_LOC

YinArray[N] ! imaginary input, q23. 0 root required.

 Youtput[N] ! output array, q23. Loaded post digit-reversal.

 ! Must be in same relative position as Xoutput[N]

 !********************** END declarations ***!

CODE

!******************** generate input signal *****************************!

begin: CLR K CLR I

!*** initialize input arrays ***

signal_loop: CLR *(K)I HALVE yqn > *(K)R !overflow prevention in first butterfly

!****** hyperstable near-quadrature oscillator (second modified coupled form) ******

MOV yqn > MACP MOV yn > MACP

MACP - epsilon X yn > yqn

MACP + epsilon X yqn > yn
!*** end oscillator ***

!*** go around loop simple way ***

NOP ADDV ONE, K

NOP CMP K, #N

NOP {JMP signal_loop, NEQ > CMR}

NOP

!******************************** end input signal generation ************!

120

!************************** begin the FFT ********************************

fft: MOV ONE > IE MOV #N > N2

MOV #REGION_R_LOC > BASER CLR K

K_loop:MOV N2 > N1 CLR IA1

CLR J LSH N2 >>2

CLR IA2 CLR IA3

 J_loop:

 MOV N2 > MACP MOV #REGION_I_LOC > BASEI

 ADD N2, MACP > I2 ADDV J, BASEI RD *(I)R > XI !XinArray

 ADD I2, MACP > I3 MOV N2 > I1 RD *(I2)R > XI2

 NEG ONE > MACP SUBV N1, SIZEM1R > MACP RD *(I)I > YI !YinArray

 ADD IE, MACP > count AVG XI, XI2 > R1 RD *(I2)I > YI2

 ADD ONE, MACP SUB R1, XI > R3 RD *(I1)R > XI1

 NOP AVG YI, YI2 > S1 RD *(I3)R > XI3

 NOP SUB S1, YI > S3 RD *(I1)I > YI1

 DBL IA2 > IA2_doub AVG XI1, XI3 > R2 RD *(I3)I > YI3

 DBL IA3 > IA3_doub SUB R2, XI1 > R4 RD *(IA2_doub) > CO2

 DBL IA1 > IA1_doub AVG YI1, YI3 > S2 RD *(IA2_doub(+)) > SI2

 NOP SUB S2, YI1 > S4 RD *(IA3_doub) > CO3

 NOP SUB R2, R1 > R2b RD *(IA3_doub(+)) > SI3

 NOP SUB S2, S1 > S2b RD *(IA1_doub) > CO1

 ADD I, MACP > Ir SUB S4, R3 > R1b RD *(IA1_doub(+)) > SI1

 ADD I1, MACP > I1r ADD S3, R4 > S1b RD *(BASE += N1)R > XI !ok

 ADD I2, MACP > I2r ADD R3, S4 > R3b RD *(I2)R > XI2

 ADD I3, MACP > I3r SUB R4, S3 > S3b RD *(BASE += N1)I > YI !ok

 NOP REPT I_loopEnd, count > REPT_CNT

 I_loop:

 R2b X CO2 > MAC AVG R1, R2 > *(Ir)R RD *(I2)I > YI2

 MAC + S2b X SI2 >>1 > *(I2r)R AVG S1, S2 > *(Ir)I RD *(I1)R > XI1

 S2b X CO2 > MAC AVG XI, XI2 > R1 RD *(I3)R > XI3

 MAC - R2b X SI2 >>1 > *(I2r)I SUB R1, XI > R3 RD *(I1)I > YI1

 R1b X CO3 > MAC AVG YI, YI2 > S1 RD *(I3)I > YI3

 MAC + S1b X SI3 >>1 > *(I3r)R SUB S1, YI > S3

 S1b X CO3 > MAC AVG XI1, XI3 > R2

 MAC - R1b X SI3 >>1 > *(I3r)I SUB R2, XI1 > R4

 R3b X CO1 > MAC AVG YI1, YI3 > S2

 MAC + S3b X SI1 >>1 > *(I1r)R SUB S2, YI1 > S4

 S3b X CO1 > MAC SUB R2, R1 > R2b

 MAC - R3b X SI1 >>1 > *(I1r)I SUB S2, S1 > S2b

 NOP SUB S4, R3 > R1b

 NOP ADD S3, R4 > S1b RD *(BASE += N1)R > XI

 NOP ADD R3, S4 > R3b RD *(I2)R > XI2

 I_loopEnd:NOP SUB R4, S3 > S3b RD *(BASE += N1)I > YI

121

 MOV IA1 > MACP ADDV ONE, J

 ADD IE, MACP > MAC, IA1 CMP J, N2

 SHIFTMAC <<1 > IA2 {JMP J_loop, LT > CMR}

 ADD IA2, MAC > IA3 ADDV J, #REGION_R_LOC > BASER

MOV #REGION_R_LOC > BASER CMP K, #M-1

ASH IE <<2 {JMP K_loop, LT > CMR}

MOV #REGION_I_LOC > BASEI ADDV ONE, K

!************* digit reversal / undo overflow prevention in first butterfly **********************!

MOV &XinArray[0] > RevPointer MOV &Xoutput[0] > XoutPointer

CLR Irev REPT reversal, N-1

 NOP ADDV #BIG_ONE, Irev RD *(RevPointer)R > XI

 NOP DREV Irev > RevPointer RD *(RevPointer)I > XI2

 DBL XI => *(XoutPointer)R

reversal: DBL XI2 => *(XoutPointer)I ADDV ONE, XoutPointer

!******************************* end digit rev ************************************!

!*************************** end FFT ************************************!

NOP HALT

NOP

!***!

122

5.3. FFT Radix-4
 C-Program Simulation of ESP2 Program

/* reference file: fft4.c */

/* cd /jond/esp2/Csource */

/* This is a single precision fixed point (48-bit) rendering for ESP2 simulation. -Jon Dattorro 1993 */

/* Each stage of butterflies is scaled by 4 to prevent overflow. A sinusoid

 will then have standard power level as output from scaled DFT (scaled by factor N).

 The complex input signal is stored in a single precision array.

*/

#include <stdio.h>

#include <math.h>

double pow(), atan(), log(), log10(), sin(), cos(), sqrt(), floor();

double pow2to46, select_lower24(), lower24();

double pow2to47, RoundInt48(), TruncInt48(), TruncInt48MAC();

double pow2to23, RoundInt24(), TruncInt24();

double pow2to15, TruncInt16(), RoundInt16(), roundint();

double myfmod();

#define NMAX 4096

#define FREQ 4 /* integer, empirical value. Period is always N/FREQ */

#define RADIX 4

#define TWIDDLE_LOC 0x0

#define TWIDDLE_SIZE 2*N

void main() {

/* FFT */

char buf[32];

int N1, N2, M, IE, J, K, N;

int I, I1, I2, I3, IA1, IA2, IA3;

double CO1, SI1, CO2, SI2, CO3, SI3;

double R1, R2, R3, R4, S1, S2, S3, S4;

double R2b, R3b, R1b, S2b, S3b, S1b;

double X[NMAX], Y[NMAX], preswapX[NMAX], preswapY[NMAX], XT;

double noise_power;

/* TWIDDLE */

long templ;

double twopi, WR[NMAX], WI[NMAX];

/* INPUT SIGNAL */

double pi, amplitude, sinamp, sinamp_dB;

123

/*printf("Input number of points: ");

gets(buf); sscanf(buf, "%d", &N);

printf("Input amplitude of sinusoid (0. -> -90. dB): ");

gets(buf); sscanf(buf, "%lf", &sinamp_dB);

sinamp = pow(10., sinamp_dB/20.);

*/

sinamp = 1.0;

N = 256;

M = roundint(log((double)N)/log((double)RADIX));

twopi = 8.*atan(1.);

pi = 4.*atan(1.);

pow2to47 = pow(2.0, 47.0);

pow2to46 = pow(2.0, 46.0);

pow2to23 = pow(2.0, 23.0);

pow2to15 = pow(2.0, 15.0);

/**************** GENERATE TWIDDLE FACTORS ********************************/

/*printf("%0.6lx\t\t", TWIDDLE_LOC);*/

/*printf("%d\n", TWIDDLE_SIZE);*/

for(K=0; K<N; K++)

{

WR[K] = RoundInt24(cos((K*twopi)/N));

templ = pow2to23*WR[K];

if(templ >= 0x00800000L) {

WR[K] = TruncInt24(1.0 - pow(2., -23.));

templ = 0x7fffffL;

 }

/*printf("%0.6lx\n", templ & 0xffffffL);*/ /* redirect std output to get */

 /* ascii file */

WI[K] = RoundInt24(sin((K*twopi)/N));

templ = pow2to23*WI[K];

if(templ >= 0x00800000L) {

WI[K] = TruncInt24(1.0 - pow(2., -23.));

templ = 0x7fffffL;

 }

/*printf("%0.6lx\n", templ & 0xffffffL);*/

}

/*************** end TWIDDLE *********************************/

124

/*** GENERATE INPUT SIGNAL ********************************/

amplitude = (pow2to23-1.)/pow2to23;

for(K=0; K<N; K++)

{

X[K] = TruncInt24(0.5*sinamp*amplitude*sin(myfmod((twopi*FREQ*K)/N, twopi)));/* scale ovf in 1st butterfly.*/

Y[K] = 0.0; /* Use of RountInt yields better S/N */

/* printf("%0.6lx\n", (long)(pow2to23*X[K]) & 0xffffffL);*/ /* redirect std output to get */

 /* ascii file */

}

/*************** end INPUT *********************************/

/********************* THE FFT *******************************/

N2 = N;

IE = 1;

for(K=0; K<M; K++)

{

N1 = N2;

N2 = N2 >> 2;

IA1 = IA2 = IA3 = 0;

for(J=0; J<N2; J++)

{

CO1 = WR[IA1];

CO2 = WR[IA2];

CO3 = WR[IA3];

SI1 = WI[IA1];

SI2 = WI[IA2];

SI3 = WI[IA3];

I1 = J + N2;

I2 = I1 + N2;

I3 = I2 + N2;

for(I=J; I<N; I+=N1)

{

 R1 = TruncInt24((X[I] + X[I2])/(RADIX/2)); /* scale by 4 for */

R3 = TruncInt24(X[I] - R1); /* each */

 S1 = TruncInt24((Y[I] + Y[I2])/(RADIX/2)); /* stage of */

S3 = TruncInt24(Y[I] - S1); /* butterflies */

 R2 = TruncInt24((X[I1] + X[I3])/(RADIX/2));

R4 = TruncInt24(X[I1] - R2);

 S2 = TruncInt24((Y[I1] + Y[I3])/(RADIX/2));

S4 = TruncInt24(Y[I1] - S2);

R2b = TruncInt24(R1 - R2);

S2b = TruncInt24(S1 - S2);

R1b = TruncInt24(R3 - S4);

S1b = TruncInt24(R4 + S3);

R3b = TruncInt24(S4 + R3);

S3b = TruncInt24(S3 - R4);

125

/* if (K == 1)

{

printf("x[%d] = %lx x[%d] = %lx x[%d] = %lx x[%d] = %lx\n",I,(int)floor(pow2to23*X[I]),

I1,(int)floor(pow2to23*X[I1]),I2,(int)floor(pow2to23*X[I2]),I3,(int)floor(pow2to23*X[I3]));

printf("y[%d] = %lx y[%d] = %lx y[%d] = %lx y[%d] = %lx\n",I,(int)floor(pow2to23*Y[I]),

I1,(int)floor(pow2to23*Y[I1]),I2,(int)floor(pow2to23*Y[I2]),I3,(int)floor(pow2to23*Y[I3]));

}

*/

X[I2] = TruncInt24((TruncInt48MAC(CO2*R2b) + TruncInt48MAC(SI2*S2b))/(RADIX/2));

Y[I2] = TruncInt24((TruncInt48MAC(CO2*S2b) - TruncInt48MAC(SI2*R2b))/(RADIX/2));

X[I3] = TruncInt24((TruncInt48MAC(CO3*R1b) + TruncInt48MAC(SI3*S1b))/(RADIX/2));

Y[I3] = TruncInt24((TruncInt48MAC(CO3*S1b) - TruncInt48MAC(SI3*R1b))/(RADIX/2));

X[I1] = TruncInt24((TruncInt48MAC(CO1*R3b) + TruncInt48MAC(SI1*S3b))/(RADIX/2));

Y[I1] = TruncInt24((TruncInt48MAC(CO1*S3b) - TruncInt48MAC(SI1*R3b))/(RADIX/2));

X[I] = TruncInt24((R1 + R2)/(RADIX/2));

Y[I] = TruncInt24((S1 + S2)/(RADIX/2));

/* if (K == 1)

{

printf("xout[%d] = %lx xout[%d] = %lx xout[%d] = %lx xout[%d] = %lx\n",I,(int)floor(pow2to23*X[I]),

I1,(int)floor(pow2to23*X[I1]),I2,(int)floor(pow2to23*X[I2]),I3,(int)floor(pow2to23*X[I3]));

printf("yout[%d] = %lx yout[%d] = %lx yout[%d] = %lx yout[%d] = %lx\n",I,(int)floor(pow2to23*Y[I]),

I1,(int)floor(pow2to23*Y[I1]),I2,(int)floor(pow2to23*Y[I2]),I3,(int)floor(pow2to23*Y[I3]));

}

*/ I1 += N1;

I2 += N1;

I3 += N1;

}

IA1 += IE;

IA2 = IA1 + IA1;

IA3 = IA2 + IA1;

}

IE = IE << 2;

 }

/************************************ end FFT *********************/

for(I=0;I<N;I++)

{

preswapX[I] = X[I];

preswapY[I] = Y[I];

}

126

/********************** BIT SWAP/INPUT SCALING COMPENSATION *******/

J = 0;

N1 = N - 1;

for(I=0; I<N1; I++)

{

 if(I >= J) goto label101;

 XT = X[J];

 X[J] = X[I];

 X[I] = XT;

 XT = Y[J];

 Y[J] = Y[I];

 Y[I] = XT;

label101:K = N/RADIX;

label102:if(K*3 > J) goto label103;

J -= K*3;

K /= RADIX;

goto label102;

label103:J += K;

}

for(I=0; I<N; I++)

{

 X[I] *= 2.;

 Y[I] *= 2.;

}

/*********************************** end BIT SWAP ****************/

/** STATISTICS *********************/

noise_power = 0;

for(I=0; I<N; I++)

{

 if((fabs(X[I]) < pow(2., -23.)) && (fabs(Y[I]) < pow(2., -23.)));

else {

printf("X[%d] = %.16f\t Y[%d] = %.16f\n", I, X[I], I, Y[I]);

templ = floor(X[I]*pow2to23);

printf("integerX = %x\t\t\t", templ & 0xfffffeL);

templ = floor(Y[I]*pow2to23);

printf(" integerY = %x\n", templ & 0xfffffeL);

 }

 if((I == FREQ) || (I == (N-FREQ))) /* sine (not cosine) wave is assumed */

 noise_power += X[I]*X[I];

 else noise_power += X[I]*X[I] + Y[I]*Y[I];

}

noise_power += pow((0.5*amplitude*sinamp + Y[FREQ]), 2.) + pow((0.5*amplitude*sinamp - Y[N-FREQ]), 2.);

printf("signal/noise w/r full scale is: %.13f dB\n", -10.*log10(noise_power/(0.5*amplitude*amplitude)));

/***/

127

for(I=0; I<N; I++)

{

/* templ = floor(preswapX[I]*pow2to23);

printf("integerX[%d] = %x\t\t\t",I, templ & 0xffffffL);

templ = floor(preswapY[I]*pow2to23);

printf(" integerY[%d] = %x\n",I+513, templ & 0xffffffL);

templ = floor(X[I]*pow2to23);

printf("integerX[%d] = %x\t\t\t",I, templ & 0xffffffL);

templ = floor(Y[I]*pow2to23);

printf(" integerY[%d] = %x\n",I, templ & 0xffffffL);

*/

}

/**/

}

/****************************** SUBROUTINES *****************************/

double RoundInt48(x)

double x;

{

return(roundint(pow2to47*x)/pow2to47);

}

double RoundInt24(x)

double x;

{

return(roundint(pow2to23*x)/pow2to23);

}

double RoundInt16(x)

double x;

{

return(roundint(pow2to15*x)/pow2to15);

}

double TruncInt48(x)

double x;

{

return(floor(pow2to47*x)/pow2to47);

}

double roundint(double x) /*** replacement for rint() ***/

{

if(x >= 0.)return((double)((int)(x + 0.5)));

return((double)((int)(x - 0.5)));

}

128

double TruncInt48MAC(x)

double x;

{

return(floor(pow2to46*x)/pow2to46);

}

double TruncInt24(x) /* This emulates initialization in esp2 assembler */

double x;

{

return(floor(pow2to23*x)/pow2to23);

}

double TruncInt16(x)

double x;

{

return(floor(pow2to15*x)/pow2to15);

}

double select_lower24(x) /* also loses the LSB; the 48th bit */

double x;

{

double TruncInt24(), tempd;

tempd = x - TruncInt24(x);

return(floor(pow2to46*tempd)/pow2to46);

}

double lower24(x)

double x;

{

double TruncInt24(), tempd;

tempd = x - TruncInt24(x);

return(floor(pow2to47*tempd));

}

/****************** MYFMOD function **/

/*** used to increase accuracy of sin routines ***/

/*** fmod() uses floor() instead of (int). ***/

/*** fmod() also failing to return values within |modulo| ***/

/*** Want (int), which is magnitude truncation, for negative arguments. ***/

double myfmod(argument, modulo)

register double argument, modulo;

{

return(argument - (int)(argument/modulo)*modulo);

}

/********************************* END subroutines *****************************/

129

5.4. Comments on the FFT Radix-4 Program
The Twiddle factor [Opp/Sch] [AnalogDevices] table must be loaded into external
memory before the ESP2 program is run. To load external memory, another ESP2
Application must be run. See the External Memory Host Access Application. The C
code for the Twiddle factor table generation is given within the C-program model for the
FFT itself. The complex Twiddle factor table is interleaved; cosine then sine, cosine,
sine, etc. This is done so as to use to advantage the AGEN’s automatic Plus-One
addressing mode (+). As a check, the C-program comments include the values of the first
and last interleaved Twiddle factors.

Notice that in many instances, the programmer has chosen to explicitly write the AGEN
code. The programmer has also managed to give the various DILs meaningful names
through a DEFCONST declaration. It is important to declare those DILs in a DEFSPR so
that the assembler relinquish those particular resources. If the programmer has designed
the algorithm so that those DILs are free when the assembler might need them, then the
declaration might be unnecessary.

The FFT portion of the ESP2 program is a translation of the C-program model. The
separate C-program simulation estimates the S/N (signal to noise power ratio) of this single
precision FFT Radix-4 circuit itself to be in excess of 110�dB as implemented within the
ESP2.107

The conventional DFT (Discrete Fourier Transform [ibid.]) inherently amplifies all signals by a
factor N, the DFT length. The conventional IDFT (Inverse DFT) must scale all the bin
values by 1/N to recover the original input signal. In the algorithms108 that we present,
the responsibility of scaling is transferred to the FFT because of a high likelihood of bin
overflow when using a fixed-point processor. The scaling of the complex input signal is
distributed over each stage of butterflys to minimize truncation noise. This successive
scaling yields a remarkable robustness, even for low-level input signals.

Another approach to scaling employs the block floating-point technique which can be
implemented within a fixed-point processor, such as ESP2, having barrel shifters. This
technique performs a signal-dependent scaling. [ibid.] [Kim/Sung]

107The sinusoid frequency used in the estimate is centered on an FFT bin frequency. [ibid.]
Using an irrational frequency should not change the total noise power, but it will impact the
character of the noise power spectrum.
108The FFT algorithm, in general, is simply a faster DFT. (But not fast enough!)

130

5.5. Changes Required to ESP2 Program to make the IFFT
 (Radix-4)

Complex Swap
We would like the simplest conversion possible; this means using the same Twiddle
factor table. We will use a DSP trick; define the swap operation on the real and
imaginary parts of a complex quantity:

 swap(z) = j z* = y + j x ; z = x + j y, j = √-1
The asterisk denotes complex conjugation. Then, using the classical definitions of the
transform pair,

 IDFT{X[k]} = (j / N) (DFT{ j X*[k]})*

 = swap((1 / N) DFT{swap(X[k])})
The proof of this follows from the fact that we can show that

 IDFT{X[k]} = (1 / N) (DFT{X*[k]})*

This means that to get an IFFT (Inverse FFT) using an FFT algorithm, one must first swap
the real and imaginary parts of the complex input record. After the swapped input has
passed through the FFT, we then simply swap the complex parts of the FFT output to get
the desired result.

Remove Scaling
The required modification to our FFT algorithm, for conversion to the IFFT, is to
eliminate the scaling at each butterfly stage in the program core.
Recall that the classical definition of the discrete transform pair [Opp/Sch,pg.532] shows
scaling by 1/N appearing in only the IDFT. We previously decided to put the scaling into
the FFT algorithm instead, because the classical DFT of a real full-scale sampled sinusoid
can produce a bin output magnitude as high as N/2. Any value whose magnitude is
beyond 1.0 cannot be represented in the q23 output format we have chosen for the FFT
implementation. Because of the scaling, however, any full-amplitude sinusoid can be
represented in our FFT.

Because the first stage of butterflys is topologically prior to scaling, we always cut the
input signal amplitude by 1/2 before passing it on to the FFT algorithm. We do this to
prevent overflow in the first stage of butterflys. Likewise for the IFFT; even though there
is no required scaling following our butterfly stages, the possibility of overflow still
exists in the first butterfly of our IFFT. So, the input amplitude halving and its
concomitant post-digit-reversal amplitude compensation remains in both the FFT and
IFFT algorithms.

This swapping is not constituent to the core of the IFFT algorithm that follows. The
required changes with regard to scaling by (1/N) appear in bold type:

131

!************************** begin the IFFT Radix-4 ********************************

ifft: MOV ONE > IE MOV #N > N2

MOV #REGION_R_LOC > BASER CLR K

K_loop:MOV N2 > N1 CLR IA1

CLR J LSH N2 >>2

CLR IA2 CLR IA3

 J_loop:

 MOV N2 > MACP MOV #REGION_I_LOC > BASEI

 ADD N2, MACP > I2 ADDV J, BASEI RD *(I)R > XI !XinArray

 ADD I2, MACP > I3 MOV N2 > I1 RD *(I2)R > XI2

 NEG ONE > MACP SUBV N1, SIZEM1R > MACP RD *(I)I > YI !YinArray

 ADD IE, MACP > count ADD XI, XI2 > R1 RD *(I2)I > YI2

 ADD ONE, MACP SUB XI2, XI > R3 RD *(I1)R > XI1

 NOP ADD YI, YI2 > S1 RD *(I3)R > XI3

 NOP SUB YI2, YI > S3 RD *(I1)I > YI1

 DBL IA2 > IA2_doub ADD XI1, XI3 > R2 RD *(I3)I > YI3

 DBL IA3 > IA3_doub SUB XI3, XI1 > R4 RD *(IA2_doub) > CO2

 DBL IA1 > IA1_doub ADD YI1, YI3 > S2 RD *(IA2_doub(+)) > SI2

 NOP SUB YI3, YI1 > S4 RD *(IA3_doub) > CO3

 NOP SUB R2, R1 > R2b RD *(IA3_doub(+)) > SI3

 NOP SUB S2, S1 > S2b RD *(IA1_doub) > CO1

 ADD I, MACP > Ir SUB S4, R3 > R1b RD *(IA1_doub(+)) > SI1

 ADD I1, MACP > I1r ADD S3, R4 > S1b RD *(BASE += N1)R > XI !ok

 ADD I2, MACP > I2r ADD R3, S4 > R3b RD *(I2)R > XI2

 ADD I3, MACP > I3r SUB R4, S3 > S3b RD *(BASE += N1)I > YI !ok

 NOP REPT I_loopEnd, count > REPT_CNT

 I_loop:

 R2b X CO2 > MAC ADD R1, R2 > *(Ir)R RD *(I2)I > YI2

 MAC + S2b X SI2 >>0 > *(I2r)R ADD S1, S2 > *(Ir)I RD *(I1)R > XI1

 S2b X CO2 > MAC ADD XI, XI2 > R1 RD *(I3)R > XI3

 MAC - R2b X SI2 >>0 > *(I2r)I SUB XI2, XI > R3 RD *(I1)I > YI1

 R1b X CO3 > MAC ADD YI, YI2 > S1 RD *(I3)I > YI3

 MAC + S1b X SI3 >>0 > *(I3r)R SUB YI2, YI > S3

 S1b X CO3 > MAC ADD XI1, XI3 > R2

 MAC - R1b X SI3 >>0 > *(I3r)I SUB XI3, XI1 > R4

 R3b X CO1 > MAC ADD YI1, YI3 > S2

 MAC + S3b X SI1 >>0 > *(I1r)R SUB YI3 , YI1 > S4

 S3b X CO1 > MAC SUB R2, R1 > R2b

 MAC - R3b X SI1 >>0 > *(I1r)I SUB S2, S1 > S2b

 NOP SUB S4, R3 > R1b

 NOP ADD S3, R4 > S1b RD *(BASE += N1)R > XI

 NOP ADD R3, S4 > R3b RD *(I2)R > XI2

 I_loopEnd:NOP SUB R4, S3 > S3b RD *(BASE += N1)I > YI

132

6. Double Precision FFT Radix-2

6.1. Double Precision FFT Radix-2 C-Program Model
/* This is a validation test of the [Burrus/Parks,pg.108] Radix-2 FFT */

/* Modified for zero-indexing. - JonD May’92 */

/* This is an in-place algorithm. */

#include <stdio.h>

#include <math.h>

/* Identifies bin. Use power of two for integral number periods within record. */

#define FREQ 4

#define N 256

#define RADIX 2

double roundint();

void main() {

/* FFT */

int N1, N2, M, IE, IA, I, J, K, L;

double COS, SIN, XT, YT;

double X[256], Y[256], Wreal[256], Wimag[256];

/* TWIDDLE */

double P, A, twopi;

/* INPUT SIGNAL */

double epsilon, yn, yqn;

double pi;

M = roundint(log((double)N)/log((double)RADIX));

twopi = 8.*atan(1.);

pi = 4.*atan(1.);

/*** GENERATE TWIDDLE FACTORS ********************************/

P = twopi/N;

for(K=0; K<N; K++) {

A = K*P;

Wreal[K] = cos(A);

Wimag[K] = sin(A);

}

/*************** end TWIDDLE *********************************/

133

/*** GENERATE INPUT SIGNAL ********************************/

epsilon = 2.*sin((pi*FREQ)/N);

yqn = 0.0;

yn = -cos((pi*FREQ)/N);

for(K=0; K<N; K++) {

 X[K] = yqn/2; /* fixed-point overflow prevention */

 Y[K] = 0.0/2;

yqn -= epsilon*yn;

yn += epsilon*yqn;

}

/*************** end INPUT *********************************/

/* for(I=0; I<N; I++)

printf("X[%d] = %lf\t Y[%d] = %lf\n", I, X[I], I, Y[I]);

*/

/********************* THE FFT *******************************/

N2 = N;

for(K=0; K<M; K++) {

N1 = N2;

N2 /= RADIX;

IE = N/N1;

IA = 0;

for(J=0; J<N2; J++) {

COS = Wreal[IA];

SIN = Wimag[IA];

IA += IE;

for(I=J; I<N; I+=N1) {

L = I + N2;

XT = (X[I] - X[L])/RADIX;

X[I] = XT + X[L];

YT = (Y[I] - Y[L])/RADIX;

Y[I] = YT + Y[L];

X[L] = COS*XT + SIN*YT;

Y[L] = COS*YT - SIN*XT;

}

}

}

/************************************ end FFT ********************/

134

/**************************** BIT SWAP ***************************/

J = 0;

N1 = N - 1;

for(I=0; I<N1; I++) {

 if(I >= J) goto label101;

 XT = X[J];

 X[J] = X[I];

 X[I] = XT;

 XT = Y[J];

 Y[J] = Y[I];

 Y[I] = XT;

label101: K = N/RADIX;

label102: if(K > J) goto label103;

 J -= K;

 K /= RADIX;

 goto label102;

label103: J += K;

}

for(I=0; I<N; I++) { /* compensation for earlier fixed-point overflow prevention */

 X[I] *= 2.;

 Y[I] *= 2.;

}

/*********************************** end BIT SWAP ****************/

for(I=0; I<N; I++) {

if((fabs(X[I]) >= 1e-16) || (fabs(Y[I]) >= 1e-16))

 printf("X[%d] = %.16lf\t Y[%d] = %.16lf\n", I, X[I], I, Y[I]);

}

}

/************* replacement for rint() ******************************/

double roundint(double x)

{

if(x >= 0.)return((double)((int)(x + 0.5)));

return((double)((int)(x - 0.5)));

}

135

6.2. Double Precision FFT Radix-2 ESP2 Program
! FFT Radix-2, double precision signal - JonD June’92.

! Ref.file: fft2sim.c

! System host must set the ESP_HALT_EN bit of the HOST_CNTL interface register.

PROGRAM FFT2

PROGSIZE <= 69

DEFCONST

RADIX = 2

N = 256

FREQ = 4

Pi = 4.0*ATAN(1.0)

M = INT(LOG(N)/LOG(RADIX))

EPSILON = 2.0*SIN((Pi*FREQ)/N)

BIG_ONE = (2**24)/(RADIX**M)

REGION_T_LOC = $800800

REGION_U_LOC = $800000

DEFSPR

 DILF DILE DILD DILC

 REPT_CNT = 0

 PC = init

 SER_CONF = $007fff

 HARD_CONF = $008400

DEFGPR

 GLOBAL

epsilon = EPSILON

yqn = 0

yn = -COS((Pi*FREQ)/N)

K J I IE

N2 COSI YT_low YT_hi YTV_low

N1 SINE XT_low XT_hi XTV_low

temp Irev

DEFREGION T @REGION_T_LOC ! TABLE REGION

Twiddle[2*N] ! holds interleaved single prec. cos() and sin() table,

 ! loaded by system host at download.

Index ! AOR

136

DEFREGION U @REGION_U_LOC ! DELAYLINE REGION

Xarray[2*N] ! real input double precision interleaved. 0 root required.

Yarray[2*N] ! imaginary input double precision interleaved.

Xpointer @$2fd ! AOR declarations

Ypointer @$2fc ! ditto

XIpointer XLpointer ! used in butterfly

YIpointer YLpointer ! ditto

Xrev_pointer

Yrev_pointer

!**!

CODE

!******************** generate input signal ******************************!

init:

MOV &Yarray[0] > Ypointer MOV &Xarray[0] > Xpointer

NOP CLR K

signal_loop:

!*** initialize double precision input arrays ***

CLR *(Ypointer) HALVE yqn > *(Xpointer) !overflow prevention in first butterfly.

CLR *(Ypointer(+)) CLR *(Xpointer(+)) !low word!

!*** oscillator ***

MOV yqn > MACP MOV yn > MACP

MACP - epsilon X yn > yqn

MACP + epsilon X yqn > yn

!*** end oscillator ***

!*** go around loop simple way ***

NOP ADDV ONE,K

NOP CMP K,#N

ASH ONE <<1 > MACP {JMP signal_loop, NEQ > CMR}

ADD Ypointer,MACP > Ypointer ADDV #2,Xpointer

!*************** end input signal generation *****************************!

137

!************************** begin the FFT ********************************!

MOV ONE > IE MOV #N > N2

NOP CLR K

K_loop:

MOV N2 > N1 MOV &Twiddle[0] > Index

CLR J LSH N2 >>1

J_loop:

NOP MOV J > I

NOP ADDV IE,Index

NOP ADDV IE,Index

MOV *(Index) > COSI MOV *(Index(+)) > SINE

 I_loop:

 NOP LSH I <<1 > XIpointer

 NOP ADDV I,N2 > temp

 NOP LSH temp <<1 > XLpointer RD *(XIpointer(+)) > DILD

 NOP MOV #-1 > ALU_SHIFT RD *(XIpointer) > DILC

 NOP ADDV XIpointer,&Yarray[0] > YIpointer RD *(XLpointer(+)) > DILF

 NOP ADDV XLpointer,&Yarray[0] > YLpointer RD *(XLpointer) > DILE

!*** XT = ***

 NOP SUBV DILF,DILD > XT_low

 NOP SUBB DILE,DILC > XT_hi RD *(YIpointer(+)) > DILD

 NOP ASDL XT_hi,XT_low > XT_low RD *(YIpointer) > DILC

 ASH XT_hi >>1 ADDV DILF,XT_low > *(XIpointer(+)) RD *(YLpointer(+)) > DILF

 NOP ADDC DILE,XT_hi > *(XIpointer) RD *(YLpointer) > DILE

!*** YT = ***

 NOP SUBV DILF,DILD > YT_low

 NOP SUBB DILE,DILC > YT_hi

 NOP ASDL YT_hi,YT_low > YT_low

 ASH YT_hi >>1 ADDV DILF,YT_low > *(YIpointer(+))

 NOP ADDC DILE,YT_hi > *(YIpointer)

!*** X[L] = ***

 XT_hi X COSI > MAC LSH XT_low >>1 > XTV_low

 MAC + YT_hi X SINE > MAC LSH YT_low >>1 > YTV_low

 XTV_low X COSI > temp

 MAC + ONE X temp > MAC

 YTV_low X SINE > temp

 MAC + ONE X temp > *(XLpointer)

!*** Y[L] = ***

 YT_hi X COSI > MAC MOV MACRL > *(XLpointer(+))

 MAC - XT_hi X SINE > MAC

 YTV_low X COSI > temp

 MAC + ONE X temp > MAC ADDV N1,I

 XTV_low X SINE > temp CMP I,#N

 MAC - ONE X temp => *(YLpointer) {JMP I_loop, LT > CMR}

 MOV MACRL => *(YLpointer(+))

138

NOP ADDV ONE,J

NOP CMP J,N2

NOP {JMP J_loop, LT > CMR}

NOP

NOP ADDV ONE,K

NOP CMP K,#M

NOP {JMP K_loop, LT > CMR}

NOP LSH IE <<1

MOV &Xarray[0] > XIpointer JS bit_reversal

MOV &Yarray[0] > YIpointer NOP

!*************************** end FFT ************************************

!***************************** END PROGRAM ******************************

outahere:

NOP HALT

NOP

!*************** bit reversal / undo overflow prevention in first butterfly ************************

! This subroutine places the high order results in the Xarray[(+)] and Yarray[(+)]

! addresses; i.e., what we previously used to hold the low order double precision bits.

bit_reversal:

MOV &Xarray[0] > Xrev_pointer MOV &Yarray[0] > Yrev_pointer

CLR Irev REPT reversal,N-1

NOP ADDV #BIG_ONE,Irev RD *(Xrev_pointer) > DILF

ASH ONE <<1 > MACP BREV Irev > Xrev_pointer RD *(Yrev_pointer) > DILE

DBL DILF => *(XIpointer(+)) LSH Xrev_pointer <<1

DBL DILE => *(YIpointer(+)) ADDV &Yarray[0],Xrev_pointer > Yrev_pointer

reversal:

ADD YIpointer,MACP > YIpointer ADDV #2,XIpointer

NOP RS

NOP

!******************************* end bit rev ********************************

139

6.3. Double Precision FFT Radix-2
 C-Program Simulation of ESP2 Program

/* reference file: fft2.c - JonD 6/15/92 */

/* This is a reduced precision (48-bit) rendering for ESP2 simulation.*/

/* Each stage of butterflys is scaled by 2 to prevent overflow. A sinusoid

 will then have standard power level as output from scaled DFT (scaled by

 factor N).

 The complex input signal is stored in a double precision array for maximum

 S/N through the FFT system. Multiplications with the input signal array

 then, are in double precision.

*/

#include <stdio.h>

#include <math.h>

double pow2to46, select_lower24(), lower24();

double pow2to47, RoundInt48(), TruncInt48(), TruncInt48MAC();

double pow2to23, RoundInt24(), TruncInt24();

double pow2to15, TruncInt16(), RoundInt16(), roundint();

double myfmod();

#define NMAX 4096

#define FREQ 4 /* integer, empirical value. Period is always N/FREQ */

#define RADIX 2

#define TWIDDLE_SIZE 2*N

void main() {

/* FFT */

char buf[32];

int N1, N2, M, IE, INDEX, I, J, K, L, N;

double COS, SIN, XT, YT;

double X[NMAX], Y[NMAX];

double noise_power;

/* TWIDDLE */

long templ;

double twopi, Wreal[NMAX], Wimag[NMAX];

/* INPUT SIGNAL */

double epsilon, yn, yqn;

double pi, amplitude, sinamp, sinamp_dB;

140

/*printf("Input number of points: ");

gets(buf); sscanf(buf, "%d", &N);

printf("Input amplitude of sinusoid (0. -> -90. dB): ");

gets(buf); sscanf(buf, "%lf", &sinamp_dB);*/

N=256; sinamp_dB=0.;

sinamp = pow(10., sinamp_dB/20.);

M = roundint(log((double)N)/log((double)RADIX));

twopi = 8.*atan(1.);

pi = 4.*atan(1.);

pow2to47 = pow(2.0, 47.0);

pow2to46 = pow(2.0, 46.0);

pow2to23 = pow(2.0, 23.0);

pow2to15 = pow(2.0, 15.0);

/**************** GENERATE TWIDDLE FACTORS *******************/

/* first value is: 0x7FFFFF */ /* first interleaved value is: 0x000000 */

/* last value is: 0x7FF622 */ /* last interleaved value is: 0xFCDBD5 */

printf("Twiddle factor table size is: %d\n", TWIDDLE_SIZE);

for(K=0; K<N; K++) {

Wreal[K] = RoundInt24(cos((K*twopi)/N));

templ = pow2to23*Wreal[K];

if(templ >= 0x00800000L) {

Wreal[K] = TruncInt24(1.0 - pow(2., -23.));

templ = 0x7fffffL;

}

/*printf("%0.6lx\n", templ & 0xffffffL);*/ /* redirect std output to get */

 /* ascii file */

Wimag[K] = RoundInt24(sin((K*twopi)/N));

templ = pow2to23*Wimag[K];

if(templ >= 0x00800000L) {

Wimag[K] = TruncInt24(1.0 - pow(2., -23.));

templ = 0x7fffffL;

}

/*printf("%0.6lx\n", templ & 0xffffffL);*/

} /* 24-bit fixed-point, q23 */

/*************** end TWIDDLE *********************************/

141

/*** GENERATE INPUT SIGNAL ********************************/

/*epsilon = RoundInt24(2.*sin((pi*FREQ)/N));*/

/* *//* FREQ/N identifies bin. Use power of two */

/*amplitude = (pow2to23-1.)/pow2to23; *//* for integral */

/*yqn = RoundInt24(0.0); *//* number of periods within record. */

/*yn = RoundInt24(-amplitude*cos((pi*FREQ)/N));*/

/*for(K=0; K<N; K++) { */

/* X[K] = TruncInt24(yqn*0.5); *//* scale to prevent overflow in 1st butterfly.*/

/* Y[K] = TruncInt24(0.0*0.5); *//* Use of RountInt yields better S/N */

/* templ = pow2to23*X[K]; */

/* printf("%d \t %0.6lx\n", 2*K,templ & 0xffffffL); */ /* redirect std output to get */

 /* ascii file */

/* */

/* yqn += TruncInt24(-epsilon*yn); */

/* templ = pow2to23*yqn; */

/* if(templ >= 0x00800000L) { */

/* yqn = TruncInt24(1.0 - pow(2., -23.)); */

/* } */

 /* NOP */

/* yn += TruncInt24(epsilon*yqn); */

/* templ = pow2to23*yn; */

/* if(templ >= 0x00800000L) { */

/* yn = TruncInt24(1.0 - pow(2., -23.)); */

/* } */

/*} */

amplitude = (pow2to23-1.)/pow2to23;

for(K=0; K<N; K++) {

X[K] = RoundInt24(0.5*sinamp*amplitude*sin(myfmod((twopi*FREQ*K)/N, twopi)));

 /* 0.5 for overflow in 1st butterfly.*/

Y[K] = RoundInt24(0.5*sinamp*amplitude*0.0); /* Use of RountInt yields better S/N */

/* printf("%d \t %0.6lx\n", 2*K, (long)(pow2to23*X[K]) & 0xffffffL); */

} /* redirect std output to get ascii file */

/*************** end INPUT *********************************/

142

/********************* THE FFT *******************************/

N2 = N;

IE = 1;

for(K=0; K<M; K++) {

N1 = N2;

N2 = N2 >> 1;

INDEX = 0;

for(J=0; J<N2; J++) {

COS = Wreal[INDEX];

SIN = Wimag[INDEX];

INDEX += IE;

for(I=J; I<N; I+=N1) {

L = I + N2;

 /* scale by 2 for */

 XT = TruncInt48((X[I] - X[L])/RADIX);/* each */

X[I] = TruncInt48(XT + X[L]); /* stage of */

 /* butterflys */

YT = TruncInt48((Y[I] - Y[L])/RADIX);

Y[I] = TruncInt48(YT + Y[L]);

X[L] = TruncInt48MAC(COS*TruncInt24(XT)) + TruncInt48MAC(SIN*TruncInt24(YT))

 + TruncInt48MAC(COS*select_lower24(XT)) + TruncInt48MAC(SIN*select_lower24(YT));

Y[L] = TruncInt48MAC(COS*TruncInt24(YT)) - TruncInt48MAC(SIN*TruncInt24(XT))

 + TruncInt48MAC(COS*select_lower24(YT)) - TruncInt48MAC(SIN*select_lower24(XT));

}

}

IE = IE << 1;

}

/************************************ end FFT *********************/

143

/********************** BIT SWAP/INPUT SCALING COMPENSATION *******/

J = 0;

N1 = N - 1;

for(I=0; I<N1; I++) {

 if(I >= J) goto label101;

 XT = X[J];

 X[J] = X[I];

 X[I] = XT;

 XT = Y[J];

 Y[J] = Y[I];

 Y[I] = XT;

label101:K = N/RADIX;

label102:if(K > J) goto label103;

 J -= K;

 K /= RADIX;

 goto label102;

label103:J += K;

}

for(I=0; I<N; I++) { /* undo overflow prevention */

 X[I] *= 2;

 Y[I] *= 2;

}

/*********************************** end BIT SWAP ****************/

/** STATISTICS *********************/

noise_power = 0;

for(I=0; I<N; I++) {

if((fabs(X[I]) < pow(2., -23.)) && (fabs(Y[I]) < pow(2., -23.)));

else {

printf("X[%d] = %.16lf\t Y[%d] = %.16lf\n", I, X[I], I, Y[I]);

templ = floor(X[I]*pow2to23);

printf("integerX = %x\t\t\t", templ & 0xfffffeL);

templ = floor(Y[I]*pow2to23);

printf(" integerY = %x\n", templ & 0xfffffeL);

 }

if((I == FREQ) || (I == (N-FREQ))) /* sine (not cosine) wave is assumed */

 noise_power += X[I]*X[I];

 else noise_power += X[I]*X[I] + Y[I]*Y[I];

}

noise_power += pow((0.5*amplitude*sinamp + Y[FREQ]), 2.)

 + pow((0.5*amplitude*sinamp - Y[N-FREQ]), 2.);

printf("signal/noise through FFT w/r full scale is: %.13lf dB\n",

 -10.*log10(noise_power/(0.5*amplitude*amplitude)));

/***/

144

/************************** print out ********************************/

/*for(I=0; I<N; I++) {

templ = floor(X[I]*pow2to23);

printf("integerX[%d] = %x\t\t\t",2*I + 1, templ & 0xfffffeL);

templ = floor(Y[I]*pow2to23);

printf(" integerY[%d] = %x\n",2*I+514, templ & 0xfffffeL);

}

*/

/**/

}

/****************************** SUBROUTINES *****************************/

double RoundInt48(x)

double x;

{

return(roundint(pow2to47*x)/pow2to47);

}

double RoundInt24(x)

double x;

{

return(roundint(pow2to23*x)/pow2to23);

}

double RoundInt16(x)

double x;

{

return(roundint(pow2to15*x)/pow2to15);

}

double TruncInt48(x)

double x;

{

return(floor(pow2to47*x)/pow2to47);

}

/******** replacement for rint() on NeXT O.S. v2.1 *******/

double roundint(double x)

{

if(x >= 0.)return((double)((int)(x + 0.5)));

return((double)((int)(x - 0.5)));

}

145

double TruncInt48MAC(x)

double x;

{

return(floor(pow2to46*x)/pow2to46);

}

double TruncInt24(x)

double x;

{

return(floor(pow2to23*x)/pow2to23);

}

double TruncInt16(x)

double x;

{

return(floor(pow2to15*x)/pow2to15);

}

double select_lower24(x) /* also loses the LSB; the 48th bit */

double x;

{

double TruncInt24(), tempd;

tempd = x - TruncInt24(x);

return(floor(pow2to46*tempd)/pow2to46);

}

double lower24(x)

double x;

{

double TruncInt24(), tempd;

tempd = x - TruncInt24(x);

return(floor(pow2to47*tempd));

}

/****************** MYFMOD function **/

/*** used to increase accuracy of sin routines ***/

/*** fmod() uses floor() instead of (int). ***/

/*** fmod() also failing to return values within |modulo| ***/

/*** Want (int), which is magnitude truncation, for negative arguments. ***/

double myfmod(argument, modulo)

register double argument, modulo;

{

return(argument - (int)(argument/modulo)*modulo);

}

/********************************* END subroutines *****************************/

146

6.4. Comments on the Double Precision FFT Radix-2 Program
The complex Twiddle factor table must be loaded into external memory before the ESP2
program is run. The Twiddle factor table used here is the same as the one used before.
To load external memory, another ESP2 Application must be run. See the External
Memory Host Access Application.

The other FFT ESP2 program was optimized for speed, whereas this FFT Radix-2 ESP2
program is optimized for accuracy. This ESP2 program demonstrates the ability of ESP2
to perform double precision multiplys, accumulations, and arithmetic. The complex input
signal is generated at 24 bits, q23, but it is maintained at double precision (48 bits, q47)
as it passes through the FFT stages. This shows that an unsigned multiplier is not
necessary for double precision math.109 Although the double precision results are
available, the final output only extracts single precision results after the bit reversal
subroutine.

If we eliminate the rounding of the high precision input signal to 24-bits in the C-program
simulation, we will find the noise introduced by the FFT circuit itself. The simulation
estimates the total noise power introduced by the FFT to be about 132�dB below unity;
the noise power spectrum is well below that level. If we eliminate the rounding of the
high precision Twiddle factors to 24-bits, the total noise power falls to about -242�dB.

6.5. Changes to ESP2 Program to make the IFFT (Radix-2)
The same considerations apply as before.

 I_loop:

 NOP LSH I <<1 > XIpointer

 NOP ADDV I,N2 > temp

 NOP LSH temp <<1 > XLpointer RD *(XIpointer(+)) > DILD

 NOP NOP RD *(XIpointer) > DILC

 NOP ADDV XIpointer,&Yarray[0] > YIpointer RD *(XLpointer(+)) > DILF

 NOP ADDV XLpointer,&Yarray[0] > YLpointer RD *(XLpointer) > DILE

!*** XT = ***

 NOP SUBV DILF,DILD > XT_low

 NOP SUBB DILE,DILC > XT_hi RD *(YIpointer(+)) > DILD

 NOP ADDV DILF,DILD > *(XIpointer(+)) RD *(YIpointer) > DILC

 NOP ADDC DILE,DILC > *(XIpointer) RD *(YLpointer(+)) > DILF

 NOP NOP RD *(YLpointer) > DILE

!*** YT = ***

 NOP SUBV DILF,DILD > YT_low

 NOP SUBB DILE,DILC > YT_hi

 NOP ADDV DILF,DILD > *(YIpointer(+))

 NOP ADDC DILE,DILC > *(YIpointer)

109This fact was also demonstrated in [Dattorro] where double precision coefficients were
applied to a recursive digital filter structure using the technique called residual coefficient coding.

147

7. Reverberation

note signnote sign

672 + EXCURSE

x

x

definition

23

24

Ζ-4217 x
1. - damping

∑

x
damping

1800
x

x

decay diffusion

31

33

142
x

x

input diffusion 1

13

14

277
x

x 21

22

107
x

x 19

20

379
x

x 15

16

Figure R. Simplified Small Plate-class Reverberation topology due to
Griesinger. For the output tap structure (yL, yR) see the application program.
Delayline taps at nodes 24 and 48 are modulating. JonD 1994

input diffusion 2

input diffusion 1 input diffusion 2

delayline, z-142

node name

∑∑

908 + EXCURSE

x

x

46

48

definition

Ζ-3163Ζ-3720

x
decay

2656
x

x

decay diffusion

55

59

x
decay

Ζ-4453

39
63

30 54

Ζ-0 -> -∞

predelay

∑
xL

xR

x
1/2

1. - damping

∑

x
damping

bandwidth
∑

x
1. - bandwidth

x

x x

decay

Ζ-1
Ζ-1

Ζ-1

x

∑ ∑

∑ ∑

∑

∑ ∑

∑

∑

∑ ∑

∑

∑

∑

∑

∑

148

7.1. ESP2 Reverberation Program
! TUSCON SMALL PLATE REVERB - JonD July’94 .

!********************** assembler directives *****************************

PROGRAM VOCPLATE

DEFCONST

 Fs = 29761.894531

 MAG_TRUNC16 = $000800

 MAG_TRUNC24 = $001800

PROGSIZE <= 103

DEFSPR

SER_CONF = $007fff

HARD_CONF = $008400 | MAG_TRUNC16 ! turn on 16-bit magnitude truncation for low noise

REPT_CNT = 0

PC = bioz_loop

DEFGPR GLOBAL

xL=0 @$80 xR=0 @$81 yL=0 @$82 yR=0 @$83

DEFCONST GLOBAL

 DEFAULT_DECAY = 0.50

 DECAY_DIFFUS = 0.50

 DIFFUS1 = 0.750

 DIFFUS2 = 0.625

 DEFINITION = 0.70

 HFBW = 0.9995

 DAMPING = 0.0005

 OUTMIX = 0.60

 EXCURSE = 16 + 1 !Maximum peak sample excursion of delayline tap modulation.

 !Not used. + 1 for Plus-One addressing mode when using interpolation.

DEFGPR LOCAL

 save=0 lp_in=0

 dampL=0 dampR=0

 damping_u = 1. - DAMPING @$6c

 bandwidth_u = 1. - HFBW @$74

 outmix = OUTMIX ! output tap level

149

DEFGPR GLOBAL /* The Knobs */

 ! input diffusion

 diffus1 = DIFFUS1 @$75

 diffus2 = DIFFUS2 @$77

 ! decay time

 decay = DEFAULT_DECAY @$6e

 ! decay diffusion (decorrelates tank signals)

 ! Host computes: decay_diffus = decay + 0.15 q23, having: floor = 0.25, ceiling = 0.50

 decay_diffus = DECAY_DIFFUS @$6f

 ! decay definition (controls density of tails)

 definition = DEFINITION @$71

 ! High frequency damping

 damping = DAMPING @$6d

 ! high frequency attenuation on input

 bandwidth = HFBW @$73

DEFREGION V @$800000

 node13_14[141]

 node19_20[106]

 node15_16[378]

 node21_22[276]

 node23_24[671+EXCURSE]

 node24_30[4452]

 node31_33[1799]

 node33_39[3719]

 node46_48[907+EXCURSE]

 node48_54[4216]

 node55_59[2655]

 node59_63[3162]

 predelay[42000] !optional

 minus_one = SIZEM1V

 GLOBAL

 predelay_offset = &predelay[1] @$2de

!********************** end declarations *********************************

150

CODE

!******************************* ESP2 Code *****************************

!********* housekeeping ************

bioz_loop: NOP DIFF damping > damping_u

 NOP DIFF bandwidth > bandwidth_u

!****************** a/d/a *************************************

ASH SER0L >>0 > xL !network has some gain! MOV yL > SER7L

ASH SER0R >>0 > xR MOV yR > SER7R

!************** load predelay ***************

NOP AVG xL, xR > predelay[0]

!************************ lowpass filter input ********************

 bandwidth X *(predelay_offset) > MAC

MAC + bandwidth_u X lp_in > MAC, lp_in

!********** mono input 4 single stage guides ************************

NOP MOV node13_14[141] > MACP

MAC - diffus1 X "node13_14[141]" > node13_14[0]

MACP + diffus1 X "node13_14[0]" > MAC MOV node19_20[106] > MACP

MAC - diffus1 X "node19_20[106]" > node19_20[0]

MACP + diffus1 X "node19_20[0]" > MAC MOV node15_16[378] > MACP

MAC - diffus2 X "node15_16[378]" > node15_16[0]

MACP + diffus2 X "node15_16[0]" > MAC MOV node21_22[276] > MACP

MAC - diffus2 X "node21_22[276]" > node21_22[0]

MACP + diffus2 X "node21_22[0]" > MAC, save

!*************** decay ***************

MAC + decay X node59_63[3162] > MAC

!************** allpass 1 Left **

NOP MOV node23_24[671] > MACP

MAC + definition X "node23_24[671]" > node23_24[0]

MACP - definition X "node23_24[0]" > node24_30[0]

!************************** lowpass Left ***************************

 damping_u X node24_30[4452] > MAC

MAC + damping X dampL > dampL

!*************** decay ***************

 decay X dampL > MAC

151

!************************************ allpass 2 Left ***********************

NOP MOV node31_33[1799] > MACP

MAC - decay_diffus X "node31_33[1799]" > node31_33[0]

MACP + decay_diffus X "node31_33[0]" > node33_39[0]

!*************** decay ***************

MOV save > MACP

MACP + decay X node33_39[3719] > MAC

!************** allpass 1 Right **

NOP MOV node46_48[907] > MACP

MAC + definition X "node46_48[907]" > node46_48[0]

MACP - definition X "node46_48[0]" > node48_54[0]

!************************** lowpass Right ***************************

 damping_u X node48_54[4216] > MAC

MAC + damping X dampR > dampR

!*************** decay ***************

 decay X dampR > MAC

!************************************ allpass 2 Right ***********************

NOP MOV node55_59[2655] > MACP

MAC - decay_diffus X "node55_59[2655]" > node55_59[0]

MACP + decay_diffus X "node55_59[0]" > node59_63[0]

!***************************** Left Out *********************************

 outmix X node48_54[266] > MAC

MAC + outmix X node48_54[2974] > MAC

MAC - outmix X node55_59[1913] > MAC

MAC + outmix X node59_63[1996] > MAC

MAC - outmix X node24_30[1990] > MAC

MAC - outmix X node31_33[187] > MAC

MAC - outmix X node33_39[1066] > yL !all wet

!**************************** Right Out *********************************

 outmix X node24_30[353] > MAC

MAC + outmix X node24_30[3627] > MAC

MAC - outmix X node31_33[1228] > MAC

MAC + outmix X node33_39[2673] > MAC

MAC - outmix X node48_54[2111] > MAC

MAC - outmix X node55_59[335] > MAC

MAC - outmix X node59_63[121] > yR !all wet

!************************************ end Reverb *****************************!

NOP JMP bioz_loop

NOP BIOZ UPDATE BASEV += minus_one

!***!

152

7.2. Discussion of the Reverberation Program
The given ESP2 program is not the most efficient coding of the Reverb network possible.
We have chosen to optimize the program for readability. The program as shown can be
compressed by at least 12 instruction lines.

The Allpass Lattice Topology
The eight lattices shown in the Reverb schematic are used in this effect as allpass filters,
each having long impulse response time. The two coefficients within each individual
lattice must remain identical to maintain the allpass transfer which is insensitive to
coefficient quantization. The recommended range of these coefficients is from 0.0 to
0.9999999 (q23). Taking them both negative changes the character of the impulse
response but does not destroy the allpass transfer. This change in character is exploited in
the lattices having the coefficients called definition in the schematic. If the lattice
coefficients should exceed 1.0, instability will result.

Allpass response is the forced (steady state) response of the chosen lattice output.
Because the impulse response of each individual lattice within the Reverb schematic is so
long, in some cases the integration time constant of the human hearing system is
exceeded. This means that the perception of the allpass filter output may be as
discretized events; i.e., not allpass.

This allpass lattice topology tends to clip prematurely at internal nodes, so the input to
each lattice cannot be presented with full-scale signal at all frequencies. We like this
allpass lattice because it requires only two lines of ESP2 code to implement; observe the
coding of the four input diffusers.

Magnitude Truncation
Lattices produce distinct low-level tones, after input signal has been removed, known as
zero-input limit cycles. The origin of these tones stems from ongoing signal quantization in a
recursive topology. The spontaneous tones can be eliminated through the use of magnitude
truncation (truncation towards zero) of the double precision intermediate results written out to
single or lower precision external memory. Magnitude truncation is well known to subdue
limit cycles in digital networks composed of ladders and lattices.110 [Smith]

In this ESP2 program, magnitude truncation at the 16-bit level is activated in the
declarations section since that is the presumed width of external memory. This means
that every WR to external memory is automatically magnitude truncated to 16-bits.
Alternatively, the magnitude truncation could be dynamically activated by the running
program itself so that only selected portions of the code utilize this feature. Only the
recursive portions of the network require magnitude truncation; In Figure R, the WR to
the predelay does not require magnitude truncation.

110Magnitude truncation is never applied to data read from external memory in the ESP2.

153

The data is magnitude truncated only on its way out to external memory; i.e., the DOL
SPRs are not permanently modified. This is advantageous when the 24-bit precision
DOL contents are reused as in the delayspec Quote Scheme. If external memory is 24
bits in width (the maximum width supported by ESP2) then the need for magnitude truncation is
lessened. The ESP2 still provides for automatic magnitude truncation at the 24-bit level,
however. Using a manual shifting scheme, magnitude truncation at other bit levels can
also be accommodated.

Magnitude truncation, in the specific case of Reverberator tank topologies employing
lattice or ladder allpass networks, can reduce the circuit noise floor by 12 to 24�dB after
input signal is removed. The reason that this is true is because the predominant noise
mechanism is zero-input limit cycle oscillation,111 a multiplicity of which being
perceived as a whooshing, shushing noise floor. The magnitude truncation makes the
Reverb output eventually go to absolute zero, two’s complement. The disadvantage to its
use is that the THD+N (Total Harmonic Distortion plus Noise) of a steady state sinusoid
through the linear Reverb network can be increased by anywhere from 0 to 6�dB.

Delayline Tap Modulation
In the ESP2 program given, we do not show any delayline tap modulation. Linear
interpolation or, better yet, Allpass interpolation (as demonstrated in the Application of the same

name) can be efficiently employed to slowly modulate112 the nominal tap point of the two
indicated delaylines in the schematic. The modulation will introduce undulating pitch
change into the tank, the recirculating four lowest lattices in Figure R. As explained in
the Linear Interpolation Application, Linear interpolation will introduce time-varying
lowpass filtering as an artifact thus supplying some unaccounted damping. Allpass
interpolation overcomes this particular problem and is perfectly applicable to Reverb
because the required pitch change is microtonal. The sinusoidal LFO driving the
modulator is economical requiring only two lines of ESP2 code, while the LFO rate of
update is the same as the sample rate. For signals with much high frequency content,
such as drums, these built-in modulators serve to break up some pretty audible modes.

There is no analogue to this modulation process in a real room (unless the walls are
moving). Without the modulation, we may well describe the imaginary space emulated
by the given digital circuit as being enclosed by a picket fence. The slow modulation
serves to effectively increase the sheer number of resonances (eigentones, modes of
oscillation, picket density) in the tank. The number of resonances in a real room, hall, or
plate is probably far beyond what is existent in our little (non-modulating) Reverb
network. In the case of drums, the modulation is a godsend. In the case of piano, the
modulation, though slight, may be objectionable because of a perceived vibrato.

111Here we use the term ’limit cycle’ in the classical DSP sense.
112at a rate on the order of 1 Hz, and at a peak excursion of about 8 samples for a sample rate of
about 29.8 kHz,

154

Input Diffusers
The purpose of the four input diffusers is to quickly decorrelate the incoming signal
before it reaches the tank. The tank recirculation can sometimes become perceptible as
cyclic events if the input signal is not conditioned in this manner. This function becomes
especially important for the successful reverberation of percussive sounds.

No diffusion corresponds to zero-valued allpass coefficients, while coefficient magnitudes
close to unity produce buzzing local to the afflicted allpass. Optimal diffusion for the first-
order allpass lies somewhere in a region closer to |0.5| than to the extreme values of the
coefficients. The preset values given in the declarations were arrived at by cut-and-try.113

Filters
The three single pole direct form I lowpass filters, used for input signal bandwidth
control and Reverb tank damping, will not clip prematurely at any node [Dattorro,pg.857]
[Jackson,ch.11.3] as implemented. The bandwidth control tracks cutoff frequency,
while the damping control is high when the damping filter cutoff frequency is low.

Each filter requires only two lines of ESP2 code. Because they are first-order lowpass
filters, any low-level zero-input limit cycles they might produce would be at DC; i.e.,
they will not produce tones like the lattices. [Jackson,ch.11.5] Magnitude truncation
cannot be engaged here because the 24-bit filter memory is internal. Any signal
truncation noise power spectrum generated by the filters themselves will be centered at
DC, since it follows the pole frequency. The noise power spectrum peak gain is not great
because the one pole is typically relatively far from the unit circle.114

Output Tap Points
As given in the ESP2 code, note that the tap structure forming the stereo output signal, yL
and yR, is all wet (reverberated) signal. This particular tap structure is characteristic of
the Plate-emulation class of Reverb networks.115 Also note that the output tap structure
produces a synthetic stereo image because the stereo input is converted to a monophonic
signal116 at the Reverberator input in this particular topology. Normally, the desired
output is a mix of the reverberated signal, yL and yR, with the original (dry, full bandwidth)
stereo input signal, xL and xR. But we do not show a mixer in the a/d/a section of code.

113That Reverb is in commercial production.
114Were the filters instead high-pass, limit cycle tones might be produced at Nyquist while the
truncation noise spectrum would also be concentrated there.
115The physical ’Plate’, actually resident in some contemporary recording studios, fills a small
room in some embodiments and is sometimes gold-plated. The input signal is typically injected
onto the plate via one or two transducers while each output is a sum of multifarious signal taps,
each tap transduced at a different location on the plate.
116The ALU’s AVG instruction is useful here.

155

Simple Reverb Networks117

We show, in Figure R, one particular network for producing reverberation. We believe
that there must be a limitless variety of such networks. The question naturally arises as to
why the simple digital circuit shown produces a convincing reverberation. Consider the
plucked string of the violin; its envelope may be described as having a coherent
exponential decay. It is this character which is theorized to be one of the primary
discriminants of non-reverberated sound. Reverberating this sound, on the other hand,
would tend to randomize the string envelope and phase producing a bumpier, more
dynamic decay.

Long before DSP chips could be integrated into sampler-type synthesizers, reverberated
sampled sound was simulated by altering the decay characteristics of recorded dry
samples by randomizing an overlaid envelope applied at playback. While not absolutely
convincing, it was enough to cause pioneers [Griesinger] [Blesser/Bader] to question the
premise of precipitative work [Schroeder] at Bell Labs during the early 60’s. One can
deduce from that work that to achieve the ideal of colorless reverberation, the eigentone
density needs to approach 3 per Hz. It can also be theorized that the limit on the number
of achievable eigentones is proportional to the total delayline memory. From our current
perspective we know that emulation of physical spaces can be convincingly performed
using signal processing bandwidths as low as 10-12 kHz. This is true because of
typically rapid acoustical absorption in the high frequency region, and because the
desired output is a mix. This bandwidth would then require about 30 thousand
eigentones, hence about 64k of delayline memory. In the 1960’s, this amount was not
economical.118

In Reverberator design, while a good general rule regarding delayline memory is
certainly ’the more the better’ [Griesinger], the efficient Reverb network shown herein119

stands as testimony that the eigentone density criterion, predicting about 88k memory, is
not a hard and fast rule. Of at least equal importance is the decorrelation of the decay.

117This discussion is adapted from [Blesser] and it is supplemented by Appendix III.
118The Lexicon Model 224 Digital Reverberation System introduced in 1979, possessed only 16k
words of memory operating at a sample rate of 20 kHz. The Elecktromesstechnik, Wilhelm Franz
K.G., EMT-250 Digital Reverberator distributed in the USA by Gotham Audio Corp. beginning
in 1977, operated at a sample rate of 32 kHz having only 8k words of memory. The precursor to
this machine is described in [Oppenheim,ch.2].
119given a 15�kHz processing bandwidth and having only 22k words of memory, not including
predelay,

156

Color
On the other hand, our Reverb network signal response is not colorless. Empirically we
find that some of the most sought commercial Reverbs are somewhat colored in their
frequency responses. This means that they impose some audible resonances upon the
input signal. It is not unusual to find as many musicians and recording engineers who
like a particular Reverb as those who do not. We find that some recording engineers do
not want accurate emulation of a physical space because the reflection density takes too
long to build; they, in fact, sometimes want instantaneous high density reflections with
smooth exponential decay of the envelope having randomization in only the phase trail.

Choosing a particular Reverb for a particular application is commonplace, and purveyors
of such equipment have been known to purchase an audio signal processing box just to
acquire one particular algorithm.120 At some level, choice of Reverb becomes a matter
of taste much like art. There is no one universal reverberation network that satisfies
everyone for each and every application; we speculate that there never will.

Design
A technical chronicle of developments in the art of Reverberator design can be found in
[Gardner]. That treatise surveys the very latest techniques. Gardner provides a
translation (from the French language) of the vanguard, Jot.

120much like buying a Compact Disc because one likes the title track.

157

8. Musical Filtering
Smith gives a good introduction to classical digital filter theory in [Strawn,ch.2],
requiring only basic knowledge of math from the reader. Here we discuss filtering
requirements for musicians whose criteria are quite different from those of the electronics
engineer.

8.1. Filter (Q) Selectivity
Electronics engineers are accustomed to think of digital filters analytically in terms of
pole/zero number and locus, cutoff frequency, passband ripple, transition band or slope,
stopband attenuation, etc. Musicians and recording engineers are more comfortable
thinking in terms of filter parameters: gain or cut, center frequency, and filter Q
(selectivity) or bandwidth. Formally, filter Q is defined as the positive quantity:

 Q = ωc / ∆ω = ωc / (ω2 - ω1) (qqq)

;i.e., the center frequency divided by the bandwidth. The bandwidth is determined from
the definition of the cutoff frequencies (ω1 and ω2). Traditionally, cutoff frequencies

occur at an absolute half-power level. In the prototypical case of a steep unity-gain
(0�dB) lowpass filter, we recall this level as corresponding to the frequency location
where the magnitude-square transfer reaches -3.01�dB (=10 log10(1/2)).

But shallow audio filters may not have a 3�dB transfer excursion, so we must refine the
definition of cutoff frequency in terms of half-power excursion; not an absolute level.

0 0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

|Hc(z)|2

ωc = 1

Figure Cut. Cut filter excursion approx. 1.7 dB.

ω

cut depth2 = 0.669421

1 - 0.669421

1 - 0.834711
= 1/2

power excursion

(0.769836, 0.834711) (1.269836, 0.834711)

half-power excursion points

bandwidth

1.269836 - 0.769836

ωc = 2 = Q

Absolute

ω2ω1

158

Take for example the cut filter magnitude-square transfer function shown in Figure Cut.
This example transfer has a Q of 2. We define the two musical cutoff frequencies as
corresponding to the level at which

 (1 - |Hc(ejω)|2) / (1 - |Hc(e
jωc)|2) = 1/2 (NNN)

We must solve this equation for ω; there are two solutions, ω1 and ω2. Referencing

Figure Cut, this equation instructs us to measure the bandwidth half-way down the trough
of the magnitude square transfer. This makes intuitive sense. We cannot use the
traditional definition of cutoff frequency for this example because the trough is not deep

enough. But note that when |Hc(e
jωc) |2�=�0 (the notch filter), the solution to (NNN)

corresponds to the classical definition of cutoff frequency.

The situation is pretty much the same for the resonator. Whereas the cut filter
asymptotes to unity at z�=�±1, the resonator is loosely defined as a second-order peaked
filter having a peak gain normalized to unity at its center frequency. The resonator can be
formulated such that its magnitude square transfer is an exact flip of the corresponding
cut filter about the horizontal half-power excursion line; i.e., symmetrical with the cut
filter. (This is why many of the numbers are exactly the same in Figure Reso as they are
in Figure Cut.) We shall see how shortly.

0 0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

|Hbnorm
(z)|2

ωc = 1

Figure Reso. Resonator excursion approx. 1.7 dB.

ω

skirt depth2 = 0.669421

power excursion

(1.269836, 0.834711)

half-power excursion points

bandwidth

(0.769836, 0.834711)

1.269836 - 0.769836

ωc
= 2 = Q

1 - 0.669421

1 - 0.834711
= 1/2Absolute

ω1 ω2

159

For the resonator (the normalized boost filter) we acquire the two musical cutoff
frequencies, ω1 and ω2 , solving the slightly different equation:

 (1 - |Hbnorm
(ejω)|2) / (1 - |Hbnorm

(±1)|2) = 1/2 (RRR)

As before, the bandwidth is measured half-way up the peak of the magnitude square
transfer. Again we note that when |Hbnorm

(±1)|2 = 0 (the perfect resonator), the solution to

(RRR) corresponds to the classical definition of cutoff frequency.

Having gained an understanding of musical filter Q, we begin with two unique and
musically useful digital filter transfer functions which just happen to fit our definition of
filter selectivity:

8.2. The Cut Filter
When constructing a notch filter, we expect there to be an absolute zero of transmission at
a chosen place in the frequency-domain transfer. If we use a filter that just has zeroes
(i.e., no poles), we can indeed make a notch. The problem is that the rest of the transfer
function will not be very flat as we might like it to be. We might also like a surgical
notch; one that has high selectivity. For example, here is the magnitude transfer of a

notch filter evaluated at z�=�ejω, zero-radius R�=�1, and zero-angle θ�=�1 radian:

|1 - 2 R cos(θ) z-1 + R2 z-2|

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

ω
 Figure BN. A poor notch filter.

This transfer in Figure BN would pretty much obliterate a musical signal; especially
noting the gain at high frequencies. Also, when the notch is moved to a new fixed
location, the rest of the transfer changes its shape in an undesirable way. Hence, this
particular notch filter is not very useful.

160

In [Regalia/Mitra]121 it is shown how to make the passband portion of the notch filter
flat, and to achieve high selectivity; this is accomplished by adding poles! This result is
illustrated in the transfer function of equation (hnz).

 1 + 2 γ z-1 + z-2
 Hn(z) = (1/2)(1 + β) ------------------------------ (hnz)

 1 + γ (1 + β) z-1 + β z-2

|Hn(z)| @Q=2

0 0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

ω
 Figure Notcher. The notch filter.

This notch filter, (hnz) in Figure Notcher, will have an absolute zero at its center
frequency having controllable selectivity, while its magnitude at DC and Nyquist is
always 1 regardless of the center frequency. We must determine how to obtain a trough
of arbitrary depth while maintaining the other attributes; that would be called a
parametric cut filter. Before we do that, we look at the resonator which is a perfect
power-wise flip of this notch filter.

121[Regalia/Mitra] also discusses the construction of shelving filters using the same concepts.

161

8.3. The Resonator
We discuss the use of a resonator as a filter. It is easy to construct a resonator using only
poles. But such a transfer has problems similar to those we encountered with the all-zero
notch filter; particularly with the shape, selectivity, and magnitude evaluated along the

unit circle in the z-plane (i.e.,�at��z�=�ejω). In particular, the peak magnitude will vary as
center frequency is changed to new fixed values.

In [Jackson,ch.4.3] it is shown how to normalize the height of the resonator peak as the
center frequency changes, by adding two zeroes; one at Nyquist and the other at DC!
This musically useful result is distilled in equation (hrz).

 1 - z-2
Hr(z) = (1/2)(1 - β) ---------------------------------- (hrz)

 1 + γ (1 + β) z-1 + β z-2

|Hr(z)| @Q=2

0 0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

ω
 Figure Peaker. The perfect resonator.

This filter has a peak gain which is always precisely 1, regardless of the center frequency.
This is characteristic of a resonator. The two zeroes make the skirts of the magnitude
response asymptote to zero at the extremities. When the extremities reach zero we call
this the perfect resonator, (hrz) shown in Figure Peaker. We must determine how to
make skirts of arbitrary depth; the resonator. We must also determine how to place the
skirts at absolute magnitude 1 while achieving arbitrary peak heights; this would be
called a parametric boost filter.

162

8.4. Allpass Filter-Topology
These two transfers, Hn(z) and Hr(z), have desirable theoretical and practical properties
which we will now expose. First, there is a strong bond between (hnz) and (hrz).
Because their denominators are identical, there is one circuit that can generate both.

Consider the allpass lattice topology:

Figure Lattice. Lattice 2nd Order Allpass Filter

x

x

∑

∑
-

β

Ζ-1
x

x

∑

∑
-

γ

Ζ-1

Dr(z)

Y(z)

X(z)

A(z)

The lattice in Figure Lattice has the allpass transfer function:

 Y(z) β + γ (1 + β) z-1 + z-2

A(z) = ------ = -------------------------------- (ar0)

 X(z) 1 + γ (1 + β) z-1 + β z-2

Some characteristics of the allpass are summarized:

|A(z)| = 1, A(±1) = 1, A(ejωc) = -1. (ar1)

-3 -2 -1 1 2 3

-6

-4

-2

2

4

6 A(ejω)

β = 0.86

Figure PhA.

ωc = 1

β = 0.36

ω

It is interesting that the allpass filter will shortly become integral to a parametric filter
that is a minimum phase design. We also note in passing that the transfer to Dr(z) from
the input comprises only the denominator (the poles) of A(z):

 X(z)
Dr(z) = ---------------------------------

 1 + γ (1 + β) z-1 + β z-2

163

Back to the problem at hand, it is easily proven that

 Hr(z) = (1 - A(z)) / 2 (hrz a)
and

 Hn(z) = (1 + A(z)) / 2 (hnz a)

Substituting (ar0) into (hrz�a) and (hnz�a), we can respectively derive (hrz) and (hnz).
This means that we can construct notch and perfect resonant filters from an allpass filter.
We only have left to show that using the allpass we can construct cut, resonant, and boost
filters as well. We will use the fact (ar1) that at the critical frequency,

 ωc = arccos(-γ) (wc1)

the allpass filter output is 180o out of phase with respect to a steady state sinusoid at its input.
This critical frequency becomes the normalized center radian frequency ωc�=�2π�fc�T (for T the

sample period) for all filter types employing the allpass filter-topology shown in Figure�APDF1.

∑A(Ζ)

Figure APDF1. Cut, Notch, or Resonator Type Filter

x
1/2

x
1-k

x
1 + |1-k|

2

We have introduced a new control coefficient, k. When k=0 this circuit in
Figure�APDF1 implements the notch (hnz a) exactly, and when k=2 this same circuit
implements the perfect resonator (hrz a) exactly. Within these bounds, this control (for
k<1) gives us the ability to specify the depth of the cut, leaving the magnitude at the
extremal frequencies equal to 1. Using the same circuit for the resonator, we can control
the depth of the skirts (when k>1) leaving the absolute peak frequency magnitude at
precisely 1. These actions explain the unusual looking normalization at the output.

164

 Table APDF1T
 k = 0 notch, Hn(z)

 0 < k < 1 cut, Hc(z)
 k = 1 yields input signal

 1 < k < 2 resonator, Hbnorm
(z)

 k = 2 perfect resonator, Hr(z)

0 0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

|Hc(z)|2

ω

k=0
k=2/5
k=3/5
k=4/5

Figure Cutter. Cut Transfer for various values of k, Q=2.

ωc = 1

The absolute cut depth = (1 - (1-k)) / (1 + |1-k|) = k / (2 - k) ;0 < k < 1 (cd1)

0 0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1|Hbnorm
(z)|2

ω

k=2
k=8/5
k=7/5
k=6/5

Figure Booster. Resonator Transfer for various values of k, Q=2.

ωc = 1

The absolute skirt depth = (1 + (1-k)) / (1 + |1-k|) = (2 - k) / k ;1 < k < 2 (sd1)

165

The cut and skirt depths must each be squared to resolve with Figure Cutter and
Figure�Booster. These depth equations are easily deduced from (wc1) and (ar1)
respectively, and are independent of center frequency.

The center frequency is unequivocally determined by (wc1) for these cut, notch,
resonator, and perfect resonator filters. This center frequency corresponds to the peak or
trough extremum of the magnitude transfer evaluated on the unit circle in the z-plane.

The ordinate axis is drawn at the lower half-power excursion frequency in the two graphs
of Figure Booster and Figure Cutter. The half-power excursion frequencies (the two
cutoff frequencies) are given for the cut, notch, resonator, and the perfect resonator by

 (1+β)2 cos(ωc) +,- (β-1) √(2(1+β2) - (1+β)2 cos2(ωc))

cos(ω2,1) = --- (w21)

 2(1+β2)

 1 - tan(ωc / (2 Q))

 β = ------------------------ (wbeta)
 1 + tan(ωc / (2 Q))

Given a particular center frequency, the allpass lattice coefficient β precisely controls
selectivity (the filter�Q) for these cut, notch, resonator, and perfect resonator filters.122

Whereas the lattice coefficient γ is a function only of ωc as we see from inspection of

(wc1), here we see that β is a function of both ωc and Q as per our new definition,

(RRR) and (NNN). On one hand, it is very good that we have discovered closed form
mathematical relationships describing how to modify the two lattice coefficients to
control the musical filter parameters. But from a musical control standpoint, we would
like to have a way to decouple the filter coefficients so that only one of them controls the
center frequency while the other controls only the selectivity parameter. (We almost have
that in γ .) Later on, we will see another circuit topology which nearly reaches that ideal.

122This equation for β is exact in terms of the selectivity definition herein.

166

Regalia k Coefficients

∑A(Ζ)

Figure APDF2. Cut, Notch, or Boost Type Filter

x
1/2

x x
1+k

1-k
1+k

In [Regalia/Mitra] it was understood that a simple change of coefficient would result in a
design which substitutes the parametric boost filter for the resonator, hence incurring the loss
of the perfect resonator. Employing the same allpass filter-topology as before, the
coefficients in Figure APDF2 are derived from those in Figure APDF1 via the substitution

 (1-k) -> (1-k) / (1+k) (sub1)
and via a scaling by the boost factor k on the output, but only when k>1.

 Table APDF2T
 k = 0 notch, Hn(z)

 0 < k < 1 yields cut, Hc(z)

 k = 1 input signal
 1 < k < ∞ boost, Hb(z)

0 0.5 1 1.5 2 2.5 3

0.25

0.5

0.75

1

1.25

1.5

1.75

2

|Hc(z)|2

|Hb(z)|2

ω

k=√4/5

k=√2/5
k=√3/5

k=0

k=√6/5
k=√7/5
k=√8/5
k=√2

Figure Regal. Cut and Boost Transfers for various values of k. Q=2.

ωc = 1

Regalia absolute cut depth = k ;0 < k < 1 (cd2)
Regalia absolute boost = k ;1 < k < ∞ (sd2)

167

The cut depth and boost must each be squared to resolve with Figure Regal. These
results can be derived by substituting (sub1) into (cd1) and (sd1). As before these results
are independent of center frequency. The combined plot in Figure Regal highlights the
symmetry of the cut with the boost filters, hence the symmetry of Q. In general, the
filters of Figure APDF1 and Figure APDF2 are minimum phase.

From the allpass characteristics (ar1) it can also be deduced that, independent of center
frequency:

Regalia absolute skirt depth of boost filter = 1 ;1 < k < ∞ (sd2a)

The ordinate axis is again drawn at the lower half-power excursion frequency (the lower

cutoff frequency) in Figure Regal. The two cutoff frequencies ω2,1 for the boost filter are

derived using a slightly different equation as compared with that for the resonator,
(RRR), but it can be shown that the results are the same as before; i.e., (w21) remains
valid under:

 (|Hb(ejω)|2 - 1) / (|Hb(ejωc)|2 - 1) = 1/2 (NBNB)

Equation (NBNB) does not reduce to the classical definition of cutoff frequency,

however, because Hb(ejωc) by definition is never zero. Because we were able to derive
the Regalia k coefficients (in Figure APDF2) from the circuit in Figure APDF1 while
retaining the same topology, all the equations thus far remain applicable; i.e., for β, γ,
ωc�, and ω2,1�.

Lattice Topology in Practice
The foregoing allpass filter-topology constructed from the lattice suffers two drawbacks
to its implementation: 1)�The lattices produce spontaneous low-level audible zero-input
limit cycle tones, 2)�Lattice topologies are prone to signal overflow (hence conditional
saturation in ESP2) at internal nodes before the allpass output has reached full scale.123

The first problem is solved by magnitude truncation of all lattice memory elements to 24
bits. [Smith] Since the automatic magnitude truncation feature of the ESP2 can only be
invoked upon WR to external memory, it is clear that for these digital filters one does not
want to use internal memory; rather it is highly desirable to use 24-bit external memory
for lattice memory storage.124

123In [Jackson,ch.4.3], a novel topology for the perfect resonator is shown.
124If only 16-bit external memory is available, one is better off using 24 bit internal memory without

magnitude truncation.

168

The second problem (overflow) is solved by scaling the lattice input as already shown in
Figure�APDF1 and Figure APDF2. When premature internal overflow persists (which is
more likely for high Q, cut or boost), it becomes necessary to provide a user controlled
input-signal level adjustment.125 Compensation will be required at the filter output,
under separate user-control. Keep in mind that the cost of any output compensation is the
concomitant amplification of the filter’s internal signal truncation noise floor, so this
input scaling process should be limited.

As an alternative to the use of the allpass lattice, we recall that the direct form I filter
topology does not suffer from internal signal overflow because of its single accumulator
having infinite headroom. [Dattorro,pg.857&pg.875]126 [Jackson,ch.11.3] In
Figure�DirectLattice, we show an implementation of the second-order allpass filter (ar0)
comprising embedded direct form I first-order allpass sections.127 This topology retains
the dichotomy of the musical filter-coefficients as in the lattice, while employing the
same coefficients. Empirically, we observe that the limit cycle tones produced by the
direct form I are much quieter than those produced by the corresponding lattice in
Figure�Lattice, in general.128 Truncation error feedback (not shown) in the direct form is
known to further minimize limit cycle oscillation [Laakso], thus providing an alternative
to magnitude truncation as a remedy.

Figure DirectLattice. Direct Form I, 2nd Order Allpass Filter

β

γ

A(z)∑x

x
Ζ-1Ζ-1

Ζ-1Ζ-1

x

x ∑

−γ

−β

Ζ-1Ζ-1

x∑

x

γ

−γ

For both the lattice and embedded direct form, stability is assured by |γ|<1 and |β|<1.

125This knob is probably required anyway to compensate for filter boosts that the user requests.
126Overflow is not always a bad thing.
127Conversion to direct form II using Rossum’s technique [RossumPat.] would eliminate some memory

elements while providing automatic input scaling. The scaling is necessary to prevent internal overflow in

that topology.
128The direct form I may require error feedback [Dattorro] to be truncation noise competitive
with the lattice, however.

169

8.5. The Chamberlin Filter Topology
Now we consider high fidelity musical filtering using a different topology and the
musician’s all-pole lowpass filter type. The musician’s all-pole filter has antecedents in
the electronic music industry appearing in currently renowned and vintage music
synthesizers.129 [Curtis] The filters we previously considered had zeroes in the transfer.
We were concerned about the control of those filters as a musician might like to control
them. Here we present an additional goal; i.e., to come up with filter coefficients each of
which individually control only center frequency or selectivity (filter Q). To do so, we
re-derive the Chamberlin all-pole (two-pole) lowpass filter topology entirely from the
perspective of the discrete-time domain.130

The electronics engineer’s lowpass has zeroes in the stopband and is very flat in the
passband.131 The stopband zeroes serve to provide high attenuation there. In contrast,
musicians have a taste for peaked filters, even when the desired filter is of the lowpass
variety. Because the musician’s peak-center frequency is typically quite low (requiring
poles closer to the unit circle), zeroes are largely unnecessary due to the relatively high
attenuation at frequencies far away from the poles. When the peak-center frequency is
high, on the other hand, the excursion of the all-pole filter magnitude transfer may not
reach 3�dB; in fact, when the peak-center frequency reaches π/2 the all-pole lowpass
filter ceases being lowpass because the magnitude transfer at π starts to exceed the
transfer at DC.

Due to the fact that the Chamberlin filter is all-pole, there is little control over the rate of
transition from pass to stop band. To increase the transition rate of the lowpass filter, the
accepted solution is to cascade an identical all-pole filter. This works in practice because
the musician’s working range of the lowpass peak-center frequency is much less than π/2
for reasonable sample rates. Zeroes placed at the Nyquist frequency, for example, would
have little impact over the musician’s working range. Therefore the cascade is preferred
to zeroes at Nyquist. Zeroes elsewhere in the stopband region would entail more
computation, hence they are undesirable. In this development, we will consider only a
single filter section.

129The classic Moog analog synthesizers, for example, employed fourth-order all-pole Voltage
Controlled Filters (VCF). His constant-Q design was also known as the Moog ladder , after the
appearance of the schematic. The Chamberlin all-pole design is reputed resident within the
contemporary digital synthesizers by Peavey. A cascade of two Chamberlin filters can be considered
as the digital counterpart to the Moog VCF because many of the same characteristics are shared; they
are both all-pole constant-Q designs tuned by a single sweepable parameter.
130This filter was originally derived from an analog State-Variable filter by application of the
Impulse-Invariant transformation. [Chamberlin] points out that this circuit topology
simultaneously possesses a highpass and bandpass output at the nodes labelled hp and bp,
respectively. We discuss only the lowpass filter function of this circuit in detail here.
131The Butterworth filter for example (which is a good choice for audio with regard to minimal
ringing), has all its zeroes at Nyquist.

170

Once again, we must refine our notion of cutoff frequency by relating it to half-power
excursion, as before. We expect some kind of boosting transfer as shown in Figure Chlp.
Notice that the filter is normalized to unity at DC.132 For this filter type, we define the
passband excursion from the value of the power transfer at DC to the peak value of the
power transfer. Reminding ourselves that this transfer function is periodic in 2π, we then
similarly define the stopband excursion from the peak to the value at Nyquist.133 In
Figure Chlp the half-power excursion points are indicated defining the musician’s
bandwidth of the all-pole lowpass filter.

We find the frequencies of the half-power excursion points (the musical cutoff
frequencies) here much like we did before: The passband half-power excursion
frequency is found solving (NCHL) for ω; we call this frequency ω1�.

 (|Hchx(ejω)|2 - 1) / (|Hchx(ejωc)|2 - 1) = 1/2 (NCHL)

Similarly, the solution to (NCHR) for the half-power excursion in the stopband we call ω2�.

 (|Hchx(ejω)|2 - |Hchx(-1)|2) / (|Hchx(ejωc)|2 - |Hchx(-1)|2) = 1/2 (NCHR)

Neither of these two cutoff frequency definitions, (NCHL) and (NCHR), reduce to the
classical definition because none of the terms can go to zero in this all-pole design.

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

ω

|Hchx(z)|2

ωc = 1

β = 0.36

Figure Chlp. All-pole lowpass transfer.

peak2 = 1.961444

skirt depth2 = 0.166305

half-power excursion points
 defining bandwidth

(1.460898, 1.063875)

(0.631012, 1.480722)

Q = 1.20

132To bring the boost at the peak-center frequency ωc� down to unity, additional scaling is

required beyond what we recommend in this exposition.
133The electronics engineer’s transition band and stopband are merged in this development.
Because of the lack of zeroes here, the electronics engineer’s boundaries are not as clear. Also,
the electronics engineer would measure bandwidth from DC, unlike our measurement.

171

We begin with a simpler transfer function having no zeroes, so we can expect some of the
previously discovered equations to be different.

 α
 Hchx(z) = ---------------------- (hchz)

 1 + λ z-1 + β z-2

We seek the relationship of the coefficients to center frequency, ωc�, and Q.

 ωc = arccos(-(1 + β) λ / (4 β)) (wcx)

If we express λ as
 λ = 4�β�γ�/�(1�+�β)
then we find the simpler expression for peak-center frequency.�

 ωc = arccos(-γ) (wc1)

This equation for center frequency is the same as before, and both (wc1) and (wcx) are
exact.

At the peak-center frequency, the magnitude square transfer reaches its peak height;
exactly:
 4 α2 β

max(|Hchx(ejω)|2) = -------------------------

 (β - 1)2 (4 β - λ2)

 α2 (1 + β)2
 = -- (maxchx)
 (β - 1)2 (1 + β2 - 2 β cos(2 ωc))

For the lowpass filter, we normalize the transfer to unity at DC, so α becomes:

 α = 1 + λ + β

The two musical cutoff frequencies were determined exactly using Mathematica
[Wolfram]134 as:

 (cos,sin)2(ωc/2) (β-1) √(2(1+β2-2β cos(2 ωc)))

cos(ω2,1) = cos(ωc) +,- ---

 √(1+β+8β2+β3+β4 - β(1-6β+β2) cos(2ωc)
 +,- 4β(1+β)2 cos(ωc))

 (w21c)

134The extensions of Mathematica [Evans] to analog and digital signal processing are highly
recommended.

172

We were not able to determine an exact expression for the β coefficient in terms of ωc

and Q as we did for γ, but the following guess turns out to be a good approximation:

 β ≈ (1 - sin(ωc / (2Q))) / (1 + sin(ωc / (2Q))) (bapp)

The plot in Figure Sheet shows that our expression for β is good over the recommended
operating peak-center frequency range of ωc = 0 to π/2. To make this plot, we

substitute the desired Q into the exact equations for ω2 and ω1 (w21c) using the

approximation to β, (bapp), and then we sweep over ωc�.

1

2

3

2

4

6

8

10

0

2

4

6

8

10

1

2

3

2

4

6

8

10

0

2

4

6

8

10

ωc

Q desired

ωc
ω2 - ω1

Figure Sheet. Actual all-pole filter-Q as function of center frequency and desired Q.

Had we the exact expression for β, then the sheet would be a taut plane having unit
slope with respect to Q desired. But this approximation (bapp) is far better than some
others in the literature. [Martin/Sun] [Petraglia] [Kwan/Martin] [Strawn,pg.123] The
largest percentage errors in the recommended frequency range is for a desired Q of 1,
having maxima from 21.8%�to�27.6%.

173

Approximations
To achieve our stated goal of obtaining filter coefficients which individually control
center frequency or filter selectivity, we now make series approximations to our
expressions for the filter coefficients we have found thus far. The first several terms of
the equivalent Maclaurin series for the z-1 coefficient in (hchz) are:

λ ≈ -(2 - ωc/Q - ωc
2 + ωc

3 (1/(24 Q3) + 1/(2 Q)) + ωc
4/12 + ...)

Using the good approximation (bapp) we find that the first several terms of the Maclaurin
series for the z-2 coefficient in (hchz) are:

β ≈ 1 - ωc/Q + ωc
2/(2 Q2) - 5ωc

3/(24 Q3) + ωc
4/(12 Q4) + ...

Figure CT shows the musical filter topology [Chamberlin]135 which implements a
truncated series approximation to the desired filter coefficients, hence decoupling
somewhat the control of ωc and Q.

Hch(z)

Figure CT. Chamberlin Topology, All-Pole Filter.
 Trivial input/output compensation for internal overflow not shown.
 See Signal Overflow Analysis.

Fc

∑ Ζ-1

-

Ζ-1

∑ ∑

Qc
x

x
-

x
hp bp

Fc

2
1

bpq

Y(z)
X(z)

The all-pole lowpass transfer function of this further approximation to (hchz) in Figure�CT is:

 Y(z) Fc
2 z-1

Hch(z) = ------ = --- ≈ z-1 Hchx(z) (hchs)

 X(z) 1 - (2 - Fc Qc - Fc
2) z-1 + (1 - Fc Qc) z-2

redefining: λ = -(2 - Fc Qc - Fc
2)�, β = 1 - Fc Qc�, (hcsubs)

where, Fc ≈ 2 sin(ωc/2)�radian, Qc ≈ 1/Q

The transmogrified numerator of (hchz) now shows a delay operator in (hchs). This
comes about because of the need to eliminate an otherwise delay-free loop in the circuit
of Figure�CT.136 The numerator coefficient α has become Fc

2 to force (hchs) to unity

at DC (z=1) as stipulated. This better approximation to Fc in (hcsubs) is from
[Chamberlin] [Martin/Sun]. It becomes more exact for high Q where it is approximately
ωc when peak-center frequency is low. (An exact expression is given by (wcsx).)

135We adopt Chamberlin’s notation.
136It is remarkable that the delay-free loop is eliminated without compromise to the digital filter
coefficients, because delay-free loops can be troublesome when it is desired to maintain
autonomy of the analog coefficients in the transformation.

174

Stability/Parameter Decoupling
Stability of complex conjugate poles demands the constraint:
 0 < (1 - Fc Qc) < 1

;restated: 0 < Fc < 1/Qc (stab0)

This condition is ascertained from (hchs) by demanding a pole radius137 of magnitude
less than one.

From previous considerations we presume that the tuning range for the all-pole lowpass
filter is: π/2��>��ωc��>� 0. If we substitute (hcsubs) into the equation for actual peak-

center frequency ωc (wcx) in this range, we discover that Fc and Qc are not

completely decoupled138 except for very high selectivity (Qc ≈ 0):

 4 (1 - Fc Qc) - Fc
2 (2 - Qc

2) + Fc
3 Qc

 0 < cos(ωc) = --- < 1 (wcsx)

 4 (1 - Fc Qc)

We also find on the right-hand side that: Fc < 2/Qc - Qc

 and on the left-hand side: Fc < (-Qc + √(8 + Qc
2)) / 2

From the stability condition, (stab0), the minimum value of Fc is zero. This is achieved

for the right-hand side inequality above when Qc reaches √2. Thus we have an upper
bound on Qc to keep the actual peak-center frequency within the prescribed tuning
range;

 0� <� Qc� <� √2.

To maintain complex conjugate poles in (hchs)139 we find that the following inequality
holds:

 0� < �(Fc�+�Qc)� < 2

This is found by rooting the denominator of (hchs):

 Fc
2 z-1

Hch(z) = ---------------------------- (hchsroot)

 (1 - a z-1) (1 - a* z-1)

where, a = 1 - Fc (Fc�+�Qc) / 2 + j Fc √(1 - (Fc�+�Qc)2/4)

Using the upper bound we found for Qc we see that there will always be some finite

range of Fc over which the poles will be complex conjugate.

137See (hrz) in Appendix V to see how to find the pole radius.
138A similar conclusion can be reached by solving (bapp) for Q in terms of Fc and Qc via

(hcsubs). We leave this as an exercise. Note: (bapp) is an approximation while (wcsx) is exact.
139i.e., for peak-center frequency away from but asymptotically including DC,

175

Combining all three criteria we finally conclude that to maintain a stable lowpass filter in
the form of (hchs) having complex conjugate poles conforming to the prescribed tuning
range, then the constraint must hold:

 0 �< �Fc <��min(1/Qc , 2 - Qc , 2/Qc - Qc , (-Qc + √(8 + Qc
2))/2) (stab1)

We learn from (stab1) that an artificial upper bound on the value of Qc equal to 1 yields

a universal upper bound on Fc equal to 1 as well (corresponding to ωc of about π/3).

We conclude that we can guarantee stability of complex conjugate poles for any value of
either coefficient as long as they individually remain within the range 0�->�1.

Peak Gain
We examined the actual peak gain of Hch(ejω) over the prescribed ranges of Fc and Qc
(both, 0�->�1) substituting the truncated series approximation coefficients (hcsubs) into
(maxchx) then taking the square root. We found the peak gain to be greater than but

approximately equal to Qc
-1�. The largest excess beyond this estimate occurs for low

frequency and low�Q, or for high frequency and high Q. At Fc�=�0.000001 and Qc = 1

we found the greatest excess at about 15.5% over Qc
-1�.

There is no separate control over peak gain in the Chamberlin topology; it is controlled
indirectly through Qc�. We recommend a maximum peak gain of 24�dB, for musical
purposes, corresponding to a minimum Qc of about 0.0625�(filter Q=16).

176

8.5.1. Performance of the Chamberlin Filter
Now we wish to know whether our approximations are good enough. To do this, an
engineer might calculate the root locus of the Chamberlin poles to see how closely their
trajectory matches that of a second-order constant-Q filter. Instead we will repeat the
musical analysis, as in Figure Sheet, relating Q and center frequency; but this time we
will not use the ideal coefficients, rather we use the actual filter coefficients given by the
truncated series approximations in (hcsubs).

0.5

1

1.5

2

2

4

6

8

10

0

2

4

6

8

10

0.5

1

1.5

2

2

4

6

8

10

0

2

4

6

8

10

Fc

1/Qc

ωc
ω2 - ω1

Figure ChamSheet. Actual Chamberlin circuit Q as function of Fc and Qc
-1 .

ωc�, ω2�, and ω1� in Figure ChamSheet are calculated using the actual filter coefficients;

evaluating (wcsx) and by substituting (hcsubs) into (w21c). Figure�ChamSheet tells the
whole story by relating actual circuit Q�, (qqq), to the filter coefficients. Ideally, we are
looking for a planar relationship. Nonetheless, the sheet is fairly unwrinkled up to Fc ≈ 1,

corresponding to a tuning range of peak-center frequency up to π/3. Further, it appears that
for our purposes the selectivity parameter control, Qc�, is sufficiently decoupled from the
tuning frequency control, Fc�. Hence we can expect a good relationship of theory with

practice in that region.140

140At a sample rate of 44.1 kHz, π/3 corresponds to a bandwidth of 7350 Hz. Considering that
the topmost note of the pianoforte reaches only 4186 Hz, that tuning range is good enough for
musical purposes.

177

Integrator Analysis
Generally speaking, it is not a good idea to implement an ideal digital integrator unless it
can be guaranteed that there exists a zero of transmission across it at DC. This is
certainly the case for integrator number 1 in Figure CT which has the required zero
across it, but integrator number 2 has no such zero. In that case, one must then prove that
there can exist no signal from any source having DC content upon arrival at the input to
the integrator under scrutiny. Audio signals normally enter the digital circuit at the
designated input node, but noise having DC content is routinely generated in any
practical implementation at every node where signal truncation occurs. These noise
sources most often appear in ESP2 at the input to each multiplier because multiplier
inputs cannot accommodate double precision operands like the accumulators can.141 The
noise is accurately modelled as a deterministic signal, input to a fictitious adder resting in
front of the multiplier. Figure CTN demonstrates the application of the noise model to
one of the noise sources (e2) on its way to integrator�2:

Figure CTN. Truncation Noise Source Model.

Ζ-1

∑xbp

e2[n]

2

Fc

∑
I2

-
Hch(z)

For the Chamberlin topology we have the remarkable result that the input to integrator
number 2 never sees any signal having DC content. For verification, we now look at the
most interesting signal which is the noise source at the input to the multiplier at node bp.
There we have,

 I2(z) / e2(z) = -Fc (1 - (2 - Fc Qc) z-1 + (1 - Fc Qc) z-2) / ∆ (nn2)

where ∆ is the denominator of (hchs). The transfer (nn2) has a zero of transmission at
DC which can be proven by substituting z=1. The three other possible signal sources (at
nodes hp, bpq, and the input) acquire a simple zero of transfer at DC in the form, 1-z-1,
by the time they arrive at I2.

141We presume no truncation post-accumulation for these integrators. This presumption is
justified based on the alternative which is a leaky integrator, requiring a multiply in its loop.

178

Truncation Noise
The object of our noise analysis is to find the noise generated by the circuit itself which
then appears at the observed output. The design goal of fidelity might be stated:

Criterion 1) It is desired that the filter circuit generate no noise which would fall above
the spectral noise floor due to quantization of the original input signal.

Under this spectral interpretation of fidelity, the filter is then termed transparent to the
signal. This one is the more conservative of the two criteria for fidelity that we will
consider in this section.

Because the noise we are studying is deterministic (the sources are known), then when it
occurs early in a filter circuit topology it undergoes some filtering as does the input signal
itself. Using the truncation noise model described for the integrator analysis, then, we
wish to know the transfer from each of the noise sources to the lowpass output. Having
obtained this information, we can predict the frequency dependent amplification of each
presumably wide-bandwidth noise source. Suppose, for example, that noise due to
truncation were being generated at the 20-bit spectral level. Then any given noise
transfer would need to possess at least a 24 dB boost beyond unity (in any frequency region)
before Criterion�1 were violated, assuming 16-bit signal fidelity.142

Like the one shown in Figure CTN, there are three noise sources arising due to the
truncation at each of the respective multiplier inputs; these are labelled hp, bpq, and bp in
Figure�CT:

1) The noise transfer from hp to the output is -Hch(z). This means that the noise transfer
from hp is the same as the signal transfer (with sign inversion), which is certainly not a
bad situation. This source is the largest of the noise contributors.

2) The noise transfer from bpq to the output is Qc Hch(z). We know that the peak gain

of Hch(z) is approximately Qc
-1�, which means that the peak of this noise transfer from

bpq is about 1. This is good.

3) Lastly, we consider the noise transfer from bp to the output which can be written:
 1 - z-1

 -------- Hch(z) - Qc Hch(z)

 -Fc z-1
The first term introduces a zero at DC (but only to the noise), which is exactly what happens
when we employ first-order truncation error feedback. [Dattorro] The zero squelches the
noise in the low frequency region but boosts it in the high frequency region. Using
(hcsubs) we find that the crossover point (the point at which |1-z-1|/Fc=1), above which

the 1 - z-1 term begins to boost, is approximately ωc�. In this particular circumstance,

142(20 - 16 bits) x 6 dB/bit = 24 dB. Another way of looking at this example would be to say that
under fidelity Criterion 1, four extra bits would be required in the signal path to maintain filter
transparency if any one of the noise transfers were capable of a 24 dB gain in any frequency
region; i.e., one bit for every 6 dB of gain beyond unity transfer. Refer to Appendix IV for
supporting noise concepts.

179

the second-order lowpass filter, Hch(z), kicks in above ωc to remove the boosted noise.

The second term of noise source 3 is like noise source 2 but opposite in polarity.143

Truncation Noise Power Gain
What we have thus far are the deterministic noise transfers which were of interest because
of the way that the first criterion for fidelity was stated. The design goal of fidelity has a
second, quantitative (statistical) interpretation which is stated:

Criterion 2) It is desired that the total noise power generated by the filter circuit be less
than the total noise power due to quantization of the original input signal.

This is the interpretation ubiquitously ascribed as the -6 dB total noise power per
individual bit. [Opp/Sch,pg.123] Here we determine the number of extra bits required to
maintain signal fidelity using this criterion. To do so we must calculate what is
commonly termed the noise gain. This is essentially an estimate of the total power boost
of the internally generated, presumed spectrally white noise. Any total boost beyond
unity is bad news, while any total gain of 1 or less is good.144 The calculation is
performed using the Parseval energy relation which integrates a noise transfer in either
the time or frequency domain. Hence the calculation result is unitless since the integrand
is a ratio. From the noise transfers, we already know that the worst offender is the noise
source at hp. Substituting the poles of that transfer (hchsroot) into the integration results
from [Opp/Sch,pg.187,357], we calculate the total noise power gain at hp as:

 Fc
4 (a(1 - a*2) - a*(1 - a2))

 Nhp = -------------------------------------- (nstat)

 (a - a*)(1 - a2)(1 - a*2)(1 - a*a)

143Unfortunately, they probably will not cancel each other due to the fact that the former must
pass through another truncation nonlinearity and a delay before it ever has the opportunity to
combine with this one.
144A total noise gain of 1 says that the noise transfer will not increase the total amount of noise
that it passes, but says nothing about the spectral distribution of the passed noise.

180

 Qc

Nhp

0
0.2

0.4
0.6

0.8
1

0.2
0.4

0.6
0.8

1

0

2.5

5

7.5

10

0
0.2

0.4
0.6

0.8
1

0.2
0.4

0.6
0.8

1

0

2.5

5

7.5

10

 Fc

 Figure NPlot. Showing Nhp .

The vertical axis in Figure NPlot represents Nhp evaluated over the recommended
operating ranges of Fc (0�->�1) and Qc (1�->�0.0625). We see that there is no total
noise gain for Fc=0, because the filter is shut down at that point. But we also see that the
worst total noise power boost occurs at hp for high center frequency and high Q where
Nhp reaches 10.7826, which translates145 to 1.715 bits. The aggregate of the total noise
power contributions, generated by all the presumably uncorrelated noise sources in the
circuit of Figure CT, is calculated simply as Nhp�+�Nbpq�+�Nbp�. This sum likely
requires somewhat more than 2 extra bits (beyond the desired fidelity) in the signal path to
maintain fidelity using this latter criterion.

All in all, the all-pole lowpass Chamberlin topology looks good from the standpoint of
truncation noise performance. This is true because the pole gain, which is the
determinant of noise gain in general, does not exceed the desired filter peak-gain for the
Chamberlin topology; the maximum pole gain is the maximum peak gain which we
recommend to be 24�dB. The most significant improvement in noise performance would
come from further minimization of the hp noise source, like we saw in the case of the bp
noise source where truncation error feedback is built in.

14510 log(10.7826)/(20 log(2)) = log
2
(√10.7826) bits.

181

Limit Cycle Oscillation
Zero-input limit cycling arises due to ongoing signal quantization within a recursive
topology; [Jackson] a nonlinear operation in an otherwise discrete linear system.146 The
filter coefficients are parameters to limit cycles but are not the cause. Limit cycles
manifest themselves as annoying low-level tones at a circuit’s outputs when no input
signal is present. Signal quantization in ESP2 (as in most modern DSP chips) most often takes
place at the single precision multiplier inputs where double precision operands cannot be
accepted, so must be truncated.147 The limit cycle tones can therefore be visualized to
enter the topology at the same places as the truncation noise. One such input port is
shown in Figure�CTN. Like the truncation noise sources, if limit cycle tones occur early
in a filter topology they will be filtered like the signal (at the same point of entry) itself.

We now know that limit cycle oscillation is minimized by truncation error feedback
[Laakso] which was devised to minimize the amplification of truncation noise. [Dattorro]
Essentially, error feedback introduces zeroes into the noise transfer function, strategically
placed on the unit circle. A reasonable hypothesis is, therefore, that with or without error
feedback, if the noise transfer from a quantizer to the output has a term 1-z-1 then it
provides some immunity to limit cycles as well as some squelching of truncation noise,
both artifacts caused by that same quantizer.148 From our truncation noise analysis of
the Chamberlin topology we see that only one of the truncation noise transfers has such a
term. Hence, limit cycle tones cannot be ruled out. Our only recourse is to minimize
their amplitude of oscillation by providing internal signal truncation at lower levels. This
is tantamount to providing higher precision signal paths.

Signal Overflow Analysis
The study of overflow regards the observation of signal magnitude at sensitive nodes.
Typically, one or several sensitive internal nodes may overflow (or underflow) sooner than
the output. A saturation nonlinearity clips (appropriately full-scale positive or negative) the
overflowed node as this is highly preferable to a two’s complement wrap-around
nonlinearity. The audible consequence of clipping at internal nodes is much more
objectionable than clipping at the filter output, however, so it must be precluded
completely. The sensitive internal nodes in ESP2 are, once again, the multiplier inputs
because they cannot accept overflowed inputs like the accumulators can.149 These are
labelled hp and bp in Figure�CT.

In our overflow analysis, what we are really interested in is the relationship of the
sensitive nodes to the output. So we form a ratio, R, of transfers to the sensitive nodes
with respect to the transfer to the output node:

146Signal quantization converts a discrete-time system to a digital system.
147Multipliers then produce double precision results which are usually fed to accumulators which
can accept double precision inputs.
148In fact, [Laakso92] shows that any zero in the noise transfer provides some limit cycle
immunity. The common solution to both artifacts suggests that the two phenomena are
homologous.
149Recall that most contemporary accumulators are designed to tolerate infinite intermediate
output overflow simply by virtue of non-saturating adders. [Jackson,ch.11.3] So saturation at an
accumulator output (when necessary) is never performed upon intermediate accumulated results.

182

1) Node hp: Formulate Rhp(z) = (hp(z)/X(z)) / Hch(z) = (1-z-1)2 / (Fc
2 z-1)�

 |Rhp(z)| = sin2(ω/2) / sin2(ωc/2)
This describes a boost over the output at high frequencies. The worst case of overflow
comes at the highest frequency (z=-1) and for a peak-center frequency ωc at the top of its

recommended range (π/2), for there the boost over the unity output is by the factor 2.

2) Node bp: Formulate Rbp(z) = (bp(z)/X(z)) / Hch(z) = (1-z-1) / Fc�

 |Rbp(z)| = sin(ω/2) / sin(ωc/2)

Similarly, the worst case boost over the output is absolute √2.

Based on this analysis, a simple technique to eliminate internal signal overflow, which we
have found works quite well, is to precede the Chamberlin topology with a fixed input
level attenuation=1/2 and to follow with a compensation factor of 2 at the output. The
output compensation amplifies the filter’s internally generated truncation noise, however;
i.e., the ratio of filtered signal power to the filter’s own total noise degrades by 6�dB.

As shown in Figure Chlp, the Chamberlin lowpass is a boosting filter. For some signals
the output may overflow. But overflow at the output will not always occur because the
filtered signal may not have significant energy in the frequency region of the boost.
Further, some small amount of output clipping is not offensive to the musician. Hence,
it is not desirable to automatically normalize the filter peak gain for the musician by
attenuating the input signal because there will be an objectionable loss in perceived
volume. For then, the musician would demand a knob for output compensation; such a
knob is emphatically discouraged because of the consequent amplification of internally
generated truncation noise.

The most viable solution to the output overflow problem is to provide a filter input
signal-level user control. The user then determines at what input level any clipping at the
output becomes offensive. When an input level user control exists for a boosting filter, it
becomes unnecessary to provide user-controlled output compensation to maximize the
output signal level.

183

Estimate of Coefficient Width
Regarding Fc�, using (hcsubs), resolve 1 Hz in 50 at a sample rate, Fs=44100.

-log2(2(sin(π 51/44100) - sin(π 50/44100))) ≈ 13 fractional bits.

In two’s complement Fc requires 14 bits, but Fc� is never negative.

Qc minimum is 0.0625 for 24 dB maximum peak gain. This amount of gain requires at
least 4 fractional bits; 5 bits in two’s complement although Qc is always positive. More
bits are required for increased resolution of selectivity.

Estimate of Minimum Required Internal Signal Path Width
(@24 dB maximum peak gain)

Bit Budget Attribute

 N=16 output fidelity, assumed input signal quantization
 n= 2 truncation noise immunity (Criterion 2)
 o= 1 internal signal overflow prevention
 m= 1 6 dB limit cycle suppression
+ r= max(0, (24/6)-n-m) signal path LSBs for user-controlled input level attenuation150

N+n+o+m+r = 21 bits total

This estimate maintains signal fidelity of N bits at the Chamberlin lowpass filter output.
The filter internal signal path width can be minimized by reducing the maximum peak
gain or by compromising the bit-fidelity requirement. It is interesting to note that under
the more conservative fidelity Criterion 1, the estimate of the required total number of
bits becomes 22; only one more bit (n=4, r=0). We see that the ESP2 single precision
path width (24 bits) easily meets either fidelity requirement.

Assuming that the number of bits required to represent Qc is less than or equal to the
number of bits representing Fc�, then the integrating accumulators must retain at least

14�+�21�-�1�=�34�bits151 of precision under fidelity Criterion 2, and 35 bits of precision

under Criterion�1.

150Assuming that the filter internal signal path resolution exceeds the input signal resolution, then
no input signal information will be lost through the use of an input level control, provided that the
attenuation is limited to the difference in resolution (6�dB per bit, 24�dB recommended).
151The subtraction of 1 is a consequence of the redundant sign bit in the product of a two’s
complement multiplication.

184

9. Sonically Pleasant Noise Generation
The technique we use to create white noise is called the maximal length pseudo-random
noise sequence. [MacWilliams/Sloane] [Golomb] [Recipes]152 The noise is spectrally
white because the autocorrelation function of a maximal length sequence is nearly a lone
impulse. Once we have noise that is white, it is then filtered to create noise having
color.153 The power of the noise in any given small band of frequencies is low, however,
since the total power is spread evenly over all frequencies. We find it necessary to boost
small (filtered) bands by as much as 48�dB to achieve a healthy amplitude. Filtering a
maximal length sequence using a lowpass filter having a cutoff frequency of
approximately 400 Hz, for example, yields a very soothing rumble when amplified. Such
narrow-band noise can be instantaneously modulated to get transposition in the frequency
domain; achieved through multiplication in the time domain with a sinusoid of the
desired transposition frequency, say fo�. This simple effect is reminiscent of gurgling

brooks.

A recurring theme throughout this brief is that noise generators are more useful in pairs.
Indeed, a simple way to enhance our gurgling brook above would be to transpose two
independent generators; one of them to fo�+ fε�, the other to fo - fε�, where fε is only a

few Hz. By so doing, we dismantle the spectral symmetry of the noise that would
otherwise exist about fo�. In the spirit of our theme, we present two independent audio

noise generators in Figure PN.

Figure PN. Two maximal length pseudo-random number generators.
 For N-bit wide output, take N MSBs.
 (a) b23[n+1] = b6[n] ^ b1[n]

 (b) b23[n+1] = b3[n] ^ b2[n]

b3b4b6b7b8b9b19b20b21b22b23 b11b12b13b14b15b16b17b18 b0b5

(b)

b1b10 b2

^

b23 b2b3b4b6b7b8b9b10b19b20b21b22 b11b12b13b14b15b16b17b18 b0b5

(a)

b1

^

152Often referred to as a maximal length PN sequence in the literature.
153The term "pink noise" refers to a random process having a power spectrum that falls as 3�dB
per octave, thus its power over any octave interval is the same. Often employed in the audio field
because it is subjectively white, its power spectrum is proportional to 1/f in the linear frequency
variable f. More algorithms and computer programs for colored noise generation and stochastic
processes can be found in [Kasdin].

185

Figure PN (a) and (b) are two of many possible configurations. Examples (a) and (b) each
show all the individual bits of one 24-bit register such as would be found inside the ESP2.
The caret symbol ^ is C-language notation for exclusive-OR logic. At each sample
period, the logic is performed on the two selected bits and then the whole register is shifted
right, by one bit, accepting the logical result into the MSB. The 24-bit generator output for
each example is simply the succession of 24-bit wide register values.154 Using the logic
shown in (a), a uniformly distributed non-repeating sequence of 23-bit values of length
223-1 is generated (ignoring b0). In (b) the 22-bit wide sequence length is 222-1 (ignoring
b1 and b0).

The generating logic equations are derived from Table PN; entries 23 and 22,
respectively.155 Table�PN notation is for a word�length-bit register. But Figure PN
shows how the implementation is translated to a more suitable left-justified two’s
complement format. Hence we can fit any of the first 24 equations into a 24-bit register,
and so on; we chose equations 23 and 22.

As suggested by the circuit in Figure PN, the value 0 cannot be produced using the
Table�PN logic. To start a generator, the significant bits of its register are initialized with
any nonzero value. Using a different initial register value only shifts the corresponding
sequence in time; i.e., the same sequence is started at a different phase of its cycle.

154The MSBs would be selected from each respective example in Figure PN for fewer than 24
bits-desired output from a 24-bit register. Smaller or larger registers may use different generator
equations, in general.
155We did not choose entry 24 because it requires slightly more computation.

186

Table PN. Generating equations for maximal length sequences.156

word�length generator word�length generator
 1 b0[n+1] = b0[n] 33 b32[n+1] = b13 ^ b0[n]
 2 b1[n+1] = b1 ^ b0[n] 34 b33[n+1] = b15 ^ b14 ^ b1 ^ b0[n]

 3 b2[n+1] = b1 ^ b0[n] 35 b34[n+1] = b2 ^ b0[n]

 4 b3[n+1] = b1 ^ b0[n] 36 b35[n+1] = b11 ^ b0[n]

 5 b4[n+1] = b2 ^ b0[n] 37 b36[n+1] = b12 ^ b10 ^ b2 ^ b0[n]

 6 b5[n+1] = b1 ^ b0[n] 38 b37[n+1] = b6 ^ b5 ^ b1 ^ b0[n]

 7 b6[n+1] = b1 ^ b0[n] 39 b38[n+1] = b4 ^ b0[n]

 8 b7[n+1] = b6 ^ b5 ^ b1 ^ b0[n] 40 b39[n+1] = b21 ^ b19 ^ b2 ^ b0[n]

 9 b8[n+1] = b4 ^ b0[n] 41 b40[n+1] = b3 ^ b0[n]

 10 b9[n+1] = b3 ^ b0[n] 42 b41[n+1] = b5 ^ b4 ^ b3 ^ b2 ^ b1 ^ b0[n]

 11 b10[n+1] = b2 ^ b0[n] 43 b42[n+1] = b6 ^ b4 ^ b3 ^ b0[n]

 12 b11[n+1] = b7 ^ b4 ^ b3 ^ b0[n] 44 b43[n+1] = b6 ^ b5 ^ b2 ^ b0[n]

 13 b12[n+1] = b4 ^ b3 ^ b1 ^ b0[n] 45 b44[n+1] = b4 ^ b3 ^ b1 ^ b0[n]

 14 b13[n+1] = b12 ^ b11 ^ b1 ^ b0[n] 46 b45[n+1] = b8 ^ b5 ^ b3 ^ b2 ^ b1 ^ b0[n]

 15 b14[n+1] = b1 ^ b0[n] 47 b46[n+1] = b5 ^ b0[n]

 16 b15[n+1] = b5 ^ b3 ^ b2 ^ b0[n] 48 b47[n+1] = b7 ^ b5 ^ b4 ^ b2 ^ b1 ^ b0[n]

 17 b16[n+1] = b3 ^ b0[n] 49 b48[n+1] = b6 ^ b5 ^ b4 ^ b0[n]
 18 b17[n+1] = b7 ^ b0[n] 50 b49[n+1] = b4 ^ b3 ^ b2 ^ b0[n]

 19 b18[n+1] = b6 ^ b5 ^ b1 ^ b0[n] 51 b50[n+1] = b6 ^ b3 ^ b1 ^ b0[n]

 20 b19[n+1] = b3 ^ b0[n] 52 b51[n+1] = b3 ^ b0[n]

 21 b20[n+1] = b2 ^ b0[n] 53 b52[n+1] = b6 ^ b2 ^ b1 ^ b0[n]

 22 (b) b21[n+1] = b1 ^ b0[n] 54 b53[n+1] = b6 ^ b5 ^ b4 ^ b3 ^ b2 ^ b0[n]

 23 (a) b22[n+1] = b5 ^ b0[n] 55 b54[n+1] = b6 ^ b2 ^ b1 ^ b0[n]

 24 b23[n+1] = b4 ^ b3 ^ b1 ^ b0[n] 56 b55[n+1] = b7 ^ b4 ^ b2 ^ b0[n]

 25 b24[n+1] = b3 ^ b0[n] 57 b56[n+1] = b5 ^ b3 ^ b2 ^ b0[n]

 26 b25[n+1] = b8 ^ b7 ^ b1 ^ b0[n] 58 b57[n+1] = b6 ^ b5 ^ b1 ^ b0[n]

 27 b26[n+1] = b8 ^ b7 ^ b1 ^ b0[n] 59 b58[n+1] = b6 ^ b5 ^ b4 ^ b3 ^ b1 ^ b0[n]

 28 b27[n+1] = b3 ^ b0[n] 60 b59[n+1] = b1 ^ b0[n]

 29 b28[n+1] = b2 ^ b0[n] 61 b60[n+1] = b5 ^ b2 ^ b1 ^ b0[n]

 30 b29[n+1] = b16 ^ b15 ^ b1 ^ b0[n] 62 b61[n+1] = b6 ^ b5 ^ b3 ^ b0[n]

 31 b30[n+1] = b3 ^ b0 [n] 63 b62[n+1] = b1 ^ b0[n]

 32 b31[n+1] = b28 ^ b27 ^ b1 ^ b0[n] 64 b63[n+1] = b4 ^ b3 ^ b1 ^ b0[n]

156These logic equations are not unique, but all are suitable for audio. The time index, [n],
appears once for each logic equation in this table because all time indices are the same on the
right hand side. Note that bi[n]�=�bi-1[n+1]�.

187

rectangular probability density
Using the maximal length generators given in Table PN, the sequence length is then
2word�length-1; this is the longest possible for a given word�length when the value 0 is
excluded. The generating equations157 given in Table PN each produce a unique
independent maximal length sequence having a rectangular (rather ‘uniform’) probability
density function (PDF). The probability density function [Cooper] is rectangular because
each word�length-bit value produced by the generator is equi-probable. The sequence is
maximal length because every word�length-bit value is generated just once before the
sequence repeats. This zero-mean sequence is bipolar because of its two’s complement
representation.

Figure Rect1. Bipolar Rectangular PDF noise showing localized correlation.

time

amplitude

Figure Rect1 shows a brief segment of the noise sequence generated by the circuit in
Figure�PN (a), having variance σ2 = 1/3�. The plot reveals that maximal length pseudo-
random noise generators are fundamentally relaxation-type oscillators. The arrows in the
figure point out exponential decays toward zero that are fairly obvious in that
microscopic view. This exponential relaxation is easily explained by the right shift by
one bit that occurs as part of the algorithm on every sample generated. Since exponential
decay is a common physical occurrence in the real world, that may help to explain why
these noise sources are perceptually acceptable. The exponential artifacts are not
decorrelated simply by choosing a different logic equation from Table PN.

The variance for the rectangular PDF is

()−=σ
2

2

21
xx nimxam

When xmin = -xmax and xmax = 1, then σ2 = 1/3�.

157More generating equations can be found in [Recipes,ch.7.4].

188

triangular probability density
By linearly adding158 two sequences from different generators,

 y = x1/2 + x2/2 (pn0)

their rectangular probability density functions become convoluted; the sum y has a
triangular probability density function which is useful for alleviating pseudo-noise
amplitude modulation (‘breathing’) in dither applications. [Vanderkooy/Lipshitz]

Triangular probability density sequences generated in this manner remain spectrally white
and retain exponential relaxation in time that is fairly obvious to the eye (see
Figure�Tri1). This zero-mean sequence has variance

+−
=σ

22
2

81
yyyy nimnimxamxam

When ymin = -ymax and ymax = 1, then σ2 = 1/6�. The variance can be used to
approximate the perceived loudness with respect to other PDFs.

Figure Tri1. Bipolar Triangular PDF noise.

time

amplitude

Figure Tri1 shows a segment of a triangular probability density noise process generated
via (pn0), having variance σ2 = 1/6�. (There is no correspondence to the time axis of the other

figures.)

158The two sequences must each be scaled by 1/2 prior to the addition to avoid clipping. The
ESP2 AVG instruction is useful here because it has one extra bit of headroom, hence no incurred
loss of the LSB of the sum.

189

Gaussian probability density
If we continue the process of summing a number of independent sequences, then the
central limit theorem159 predicts that the probability density function of the sum
approaches Gaussian (rather ’Normal’) density as the number gets large.160 That is why
recursive filtering of a rectangular density process also tends towards the Gaussian.

In [Recipes,ch.7.2] is discussed the Box-Muller method of transforming rectangular into
Gaussian probability density using a fixed and finite amount of computation. As in the
triangular case, two independent x sequences having rectangular probability density are
first generated: x1 and x2�. By the principle of transformation of variables we apply,

y = σ -2 ln(x1) cos(2π x2) (pn1)√

The x sequences in (pn1) must now span the domain of positive values (0.0+�->�1.0).
The best way to do this is prior to the transformation, we let

x��->��-0.5 x� +� 0.5 (pn2)

This linear operation on the originally bipolar x should not upset its autocorrelation
function. Hence the x sequence remains spectrally white in its conversion to a unipolar
sequence via (pn2). We wish to avoid an exception process for ln(0)�, hence the
negative coefficient in (pn2), assuming q23 two’s complement format where 1.0 exactly
is not expressible.

The bipolar zero-mean sequence y in (pn1) is a Gaussian density sequence having a
specified standard deviation σ (and variance σ2). The y sequence is bipolar because
of the cos(.) evaluation. Only the localized correlation property (see Figure Rect1) of the
x sequences carries over to the y sequence.161 The spectral content of y becomes
lowpass; the autocorrelation functions of the x sequences are not preserved in y after
the nonlinear transformation (pn1).

Figure Gauss1. Bipolar Gaussian PDF noise.

time

amplitude

159from the field of probability and statistics [Cooper] [Recipes],
160To implement this procedure we find that it is necessary to scale each sequence by the number
of sequences summed if absolutely no clipping is desired.
161We wish that were not the case because the localized correlation can be a liability for some
sensitive applications.

190

In [Recipes] it is explained that the sin(.) function can replace cos(.)� in (pn1), and a
technique is shown to eliminate the trigonometric function evaluation altogether.162

Because ln(x1) can approach negative infinity, we must choose σ according to the
dynamic range of the number system we are working within. But there will always be
outliers generated by (pn1). A remedy might be to allow some numerical wrapping of y
in those events. The Gaussian probability density function will then become aliased163

and a tradeoff must be made between the aberration to the density function caused by
clipping and that caused by wrapping.

Figure Gauss1 shows a brief segment from a Gaussian noise process having σ�=�0.3
generated via (pn1). Conditional saturation (clipping) was used to handle outliers.

Sonic Musing
The author presently owns about five electronic gadgets for sonic noise generation.
These devices are analog and emit electronically amplified sound through a speaker,
except for one which consists of an encased fan driven by an induction motor. The fan-
type unit was first purchased from Marpac Corp., NC, in 1977. Their analog noise
generators, which amplify and filter transistor noise, were found to be suitable substitutes
for the earlier electromechanical version. The noise generators are used when sleeping,
concentrating, or to block out unwanted ambient disturbances.

Several years ago, the same company announced a new ‘improved’ digital sonic noise
generator. Not only is the noise generation digital and algorithmic, but the front panel is
now computerized. After living with the unit for a while, the author concluded that the
noise was not pleasant, so back it went to the factory for repair. Discussion with the
Marpac engineer revealed that the device was operating within normal parameters and
was not in need of repair. He confided that he too liked the analog units better. We no
longer use that digital device, however, because it sounds bad. Nonetheless, the Marpac
company claims growing sales of the digital unit.

The author has put noise generation algorithms into production for commercial musical
products, and into the fitting system164 that supports a customized hearing aid. When
evaluating various algorithms, we used our ears. Our purpose for transcribing these
events is to convey the knowledge that digital methods for noise generation are not
inherently bad, but some algorithms sound better than others. We know that when
properly filtered, the fundamental algorithm presented herein sounds as good as any
analog method of noise generation; that was our ultimate criterion for choosing it.

162The technique to eliminate the trigonometric function evaluation reverts the domain of the x
sequences back to (-1.0 -> 1.0), but now entails a new exception process: It must detect when the
sum of the squares of x1 and x2 is in excess of unity. In that case, the pair is discarded and a

new pair is generated. (This fact was first brought to the author’s attention by Paul Hargrove.)
This decision process brings with it a variable execution time that may be undesirable in some
circumstances.
163 much like the analog sinc() function becomes the aliased sinc() function (the Dirichlet kernel)
in the discrete domain,
164 Audio’D, Hearing Solutions, Paoli PA, USA

191

References
[Adams] Robert Adams, Tom Kwan, ‘Theory and VLSI Architectures for Asynchronous
Sample-Rate Converters’, Journal of the Audio Engineering Society, vol.41, no.7/8,
pg.539, 1993 July, AES, 60 East 42nd St., New York NY, 10165 USA

[AnalogDevices] ADSP-2100 Family - Applications Handbook, vol.1, 1989, Analog
Devices, Inc., DSP Division, One Technology Way, Norwood MA, 02062 USA

[Andreas] David C. Andreas, ‘VLSI Implementation of a One-Stage 64:1 FIR
Decimator’, 89th Convention of the Audio Engineering Society, Los Angeles,
Preprint�2976 (G-4), 1990 September�21-25, AES, 60 East 42nd St., New�York NY,
10165 USA

[Beigel] Michael L. Beigel, ‘A Digital "Phase Shifter" for Musical Applications, Using
the Bell Labs (Alles-Fischer) Digital Filter Module’, Journal of the Audio Engineering
Society, vol.27, no.9, pp.673-676, 1979 September, AES, 60 East 42nd St., New York
NY, 10165 USA

[Blesser] Barry Blesser, personal communication.

[Blesser/Bader] Barry A. Blesser, Karl-Otto Bader, Electric Reverberation Apparatus,
United States Patent No.4,181,820, January 1, 1980

[Burrus/Parks] C.S. Burrus, T.W. Parks, DFT/FFT and Convolution Algorithms, 1985,
Wiley-Interscience Publication, John Wiley and Sons, New York NY, USA

[Chamberlin] Hal Chamberlin, Musical Applications of Microprocessors, 1980,
Hayden Books, 4300 West 62nd St., Indianapolis IN, 46268 USA

[Cooper] George R. Cooper, Clare D. McGillem, Probabilistic Methods of Signal and
System Analysis, second edition, 1986, Oxford University Press, 2001 Evans Rd.,
Cary NC, 27513 USA

[Crochiere/Rabiner] Ronald E. Crochiere, Lawrence R. Rabiner, Multirate Digital Signal
Processing, 1983, Prentice-Hall, Inc., Englewood Cliffs NJ, 07632 USA

[Curtis] CEM3328 Four Pole Low Pass VCF, 1983, Curtis Electromusic Specialties,
110 Highland Ave., Los Gatos CA, 95030 USA

192

[Dattorro] Jon Dattorro, ‘The Implementation of Recursive Digital Filters for High-
Fidelity Audio’, Journal of the Audio Engineering Society, vol.36, no.11, pp.851-878,
1988 November, AES, 60 East 42nd St., New York NY, 10165 USA.
---------, Corrections to above, Journal of the AES, vol.37, no.6, pg.486, 1989 June
---------, Addendum to above, Journal of the AES, vol.38, no.3, pp.149-151, 1990 March

[Dattorro2400] Jon Dattorro, ‘Using Digital Signal Processor Chips in a Stereo Audio
Time Compressor/Expander’, 83rd Convention of the Audio Engineering Society,
New York, Preprint�2500 (M-6), 1987 October�16-19, AES, 60 East 42nd St.,
New�York NY, 10165 USA

[Dattorro89] Jon Dattorro, ‘The Implementation of Digital Filters for High Fidelity
Audio, Part II�-�FIR’, Audio in Digital Times, The Proceedings of the Audio Engineering
Society 7th International Conference, Toronto, pp.168-180, 1989 May�14-17,
AES, 60 East 42nd St., New�York NY, 10165 USA

[DattorroPat.] Jon C. Dattorro, Albert J. Charpentier, David C. Andreas, ‘Decimation
Filter as for a Sigma-Delta Analog-to-Digital Converter’, United States Patent
No.5,027,306, June 25, 1991

[Evans] B. L. Evans, L. J. Karam, K. A. West, J. H. McClellan, ‘Learning Signals and
Systems with Mathematica’, IEEE Transactions on Education, vol.36, no.1, pp.72-78,
1993 February

[Fliege/Wintermantel] Norbert J. Fliege, Jorg Wintermantel, ‘Complex Digital Oscillators
and FSK Modulators’, IEEE Transactions on Signal Processing, vol.40, no.2, pp.333-
342, 1992 February

[Gardner], W. G. Gardner, ‘Reverberation Algorithms’, in Applications of Signal
Processing to Audio and Acoustics, M. Kahrs, K. Brandenburg, editors, 1996,
Kluwer Academic Publishers, 101 Philip Dr., Assinippi Park, Norwell MA, 02061 USA

[Golomb] Solomon W. Golomb, editor, Digital Communications with Space
Applications, 1964, Peninsula Publishing, Los Altos CA, 94022 USA

[Gordon/Smith] John W. Gordon, Julius Orion Smith, ‘A Sine Generation Algorithm for
VLSI Applications’, Proceedings of the International Computer Music Conference, 1985,
pp.165-168, ICMA, 2040 Polk St. #330, San Francisco CA, 94109 USA

193

[Gray] Robert M. Gray, Source Coding Theory, 1990, Kluwer Academic Publishers,
101 Philip Dr., Assinippi Park, Norwell MA, 02061 USA

[Griesinger] David Griesinger, ‘Practical Processors and Programs for Digital
Reverberation’, Audio in Digital Times, The Proceedings of the Audio Engineering
Society 7th International Conference, Toronto, pp.187-195, 1989 May 14-17,
AES, 60 East 42nd St., New York NY, 10165 USA

[Haija/Ibrahim] A. I. Abu-el-Haija, M. M. Al-Ibrahim, ‘Improving Performance of
Digital Sinusoidal Oscillators by means of Error Feedback Circuits’, IEEE Transactions
on Circuits and Systems, vol.CAS-33, no.4, pp.373-380, 1986 April

[Hamming] R. W. Hamming, Numerical Methods for Scientists and Engineers,
second edition, 1973, Dover Publications, Inc., 31 East 2nd St., Mineola, NY 11501

[Harris] Fredric J. Harris, ‘On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform’, Proceedings of the IEEE, vol.66, no.1, pp.51-84,
1978 January

[Hartmann] W. M. Hartmann, ‘Flanging and Phasers’, Journal of the Audio Engineering
Society, vol.26, no.6, pp.439-443, 1978 June, AES, 60 East 42nd St., New York NY,
10165 USA

[Jackson] Leland B. Jackson, Digital Filters and Signal Processing, third edition, 1996,
Kluwer Academic Publishers, 101 Philip Dr., Assinippi Park, Norwell MA, 02061 USA

[Kasdin] N. Jeremy Kasdin, ‘Discrete Simulation of Colored Noise and Stochastic
Processes and 1/fα Power Law Noise Generation’, Proceedings of the IEEE,
vol.83, no.5, pp.800-827, 1995 May

[Kim/Sung] S. Kim, W. Sung, ‘A Floating-Point to Fixed-Point Assembly Program
Translator for the TMS 320C25’, IEEE Transactions on Circuits and Systems II,
vol.41, no.11, pp.730-739, 1994 November

[Kwan/Martin] T. Kwan, K. Martin, ‘Adaptive Detection and Enhancement of Multiple
Sinusoids Using a Cascade IIR Filter’, IEEE Transactions on Circuits and Systems,
vol.36, no.7, pp.937-947, 1989 July

194

[Laakso] Timo I. Laakso, Error Feedback for Reduction of Quantization Errors due to
Arithmetic Operations in Recursive Digital Filters, Thesis for the degree of Doctor of
Technology, Report 9, Otaniemi 1991, Helsinki University of Technology, Laboratory of
Signal Processing and Computer Technology, Otakaari 5A, SF-02150 Espoo, Finland

[Laakso92] Timo I. Laakso, Paulo S. R. Diniz, Iiro Hartimo, Trajano C. Macedo, Jr.,
‘Elimination of Zero-Input and Constant-Input Limit Cycles in Single-Quantizer
Recursive Filter Structures’, IEEE Transactions on Circuits and Systems-II, vol.39, no.9,
pp.638-646, 1992 September

[Laakso/Välimäki] Timo I. Laakso, Vesa Välimäki, Matti Karjalainen, Unto K. Laine,
‘Splitting the Unit Delay - Tools for fractional delay filter design’,
IEEE Signal Processing Magazine, vol.13, no.1, pp.30-60, 1996 January

[Lee] Francis F. Lee, ‘Time Compression and Expansion of Speech by the Sampling
Method’, Journal of the Audio Engineering Society, vol.20, no.9, pp.738-742, 1972
November, AES, 60 East 42nd St., New York NY, 10165 USA.
---------, also in Speech Enhancement, Jae S. Lim, editor, pp.286-290, 1983,
Prentice-Hall, Inc., Englewood Cliffs NJ, 07632 USA

[Luthra] A. Luthra, ‘Extension of Parseval’s Relation to Nonuniform Sampling’, IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol.36, no.12, 1988 December

[MacWilliams/Sloane] F. Jessie MacWilliams, Neil J. A. Sloane, ‘Pseudo-Random
Sequences and Arrays’, Proceedings of the IEEE, vol.64, no.12, pg.1715,
1976 December

[Martin/Sun] K. W. Martin, M. T. Sun, ‘Adaptive Filters Suitable for Real-Time Spectral
Analysis’, IEEE Transactions on Circuits and Systems, vol.CAS-33, no.2, pp.218-229,
1986 February (Also published in IEEE Journal on Solid-State Circuits, vol.SC-21, no.1)

[Moore] F. Richard Moore, Elements of Computer Music, 1990, Prentice-Hall, Inc.,
Englewood Cliffs NJ, 07632 USA

[Moorer] J. Andrew Moorer, personal communication. Also in [Strawn,pg.70].

195

[Oppenheim] Alan V. Oppenheim, editor, Applications of Digital Signal Processing,
1978, Prentice-Hall, Inc., Englewood Cliffs NJ, 07632 USA

[Opp/Sch] Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing,
1989, Prentice-Hall, Inc., Englewood Cliffs NJ, 07632 USA

[Petraglia] M. R. Petraglia, S. K. Mitra, J. Szczupak, ‘Adaptive Sinusoid Detection Using
IIR Notch Filters and Multirate Techniques’, IEEE Transactions on Circuits and
Systems�II, vol.41, no.11, pp.709-717, 1994 November

[Ramstad] Tor A. Ramstad, ‘Digital Methods for Conversion Between Arbitrary
Sampling Frequencies’, IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol.ASSP-32, no.3, pp.577-591, 1984 June

[Recipes] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery,
Numerical Recipes in C, second edition, 1992, Cambridge University Press,
40 West 20th St., New York NY, 10011 USA

[Regalia/Mitra] Phillip A. Regalia, Sanjit K. Mitra, ‘Tunable Digital Frequency Response
Equalization Filters’, IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol.ASSP-35, no.1, pp.118-120, 1987 January

[Renfors/Saramäki] M. Renfors, T. Saramäki, ‘Recursive Nth-Band Digital Filters -
Parts I and II’, IEEE Transactions on Circuits and Systems, vol.CAS-34, no.1, pp.24-51,
1987 January

[Rossum] Dave Rossum, ‘An Analysis of Pitch Shifting Algorithms’, 87th Convention of
the Audio Engineering Society, New York, Preprint�2843 (J-6), 1989 October�18-21,
AES, 60 East 42nd St., New�York NY, 10165 USA

[RossumPat.] David P. Rossum, Dynamic Digital IIR Audio Filter and Method Which
Provides Dynamic Digital Filtering for Audio Signals, United States Patent
No.5,170,369, December 8, 1992

[Schafer/Rabiner] Ronald W. Schafer, Lawrence R. Rabiner, ‘A Digital Signal Processing
Approach to Interpolation’, Proceedings of the IEEE, vol.61, pp.692-702, 1973 June

196

[Schroeder] Manfred Schroeder, ‘Natural Sounding Artificial Reverberation’, Journal of
the Audio Engineering Society, vol.10, no.3, 1962 July, AES, 60 East 42nd St.,
New York NY, 10165 USA

[Slater] Robert Slater, Portraits in Silicon, 1987, The MIT Press, Massachusetts Institute
of Technology, Cambridge MA, 02142 USA

[Smith] Julius Orion Smith, ‘Elimination of Limit Cycles and Overflow Oscillations in
Time-Varying Lattice and Ladder Digital Filters’, Music Applications of Digital
Waveguides, Report No. STAN-M-39, 1987 May, Center for Computer Research in
Music and Acoustics (CCRMA), Dept. Music, Stanford University, Stanford CA,
94305 USA

[Smith/Cook] Julius Orion Smith, Perry R. Cook, ‘The Second-Order Digital Waveguide
Oscillator’, Proceedings of the International Computer Music Conference, 1992,
pp.150-153, ICMA, 2040 Polk St. #330, San Francisco CA, 94109 USA

[SmithIII] Julius Orion Smith III, Techniques for Digital Filter Design and System
Identification with Application to the Violin, Report No. STAN-M-14, 1983 June,
Center for Computer Research in Music and Acoustics (CCRMA), Dept. Music,
Stanford University, Stanford CA, 94305 USA

[J.O.Smith] Julius O. Smith, An Allpass Approach to Digital Phasing and Flanging,
Report No. STAN-M-21, Spring 1982, Center for Computer Research in Music and
Acoustics (CCRMA), Dept. Music, Stanford University, Stanford CA, 94305 USA

[Smith/Friedlander] Julius O. Smith, Benjamin Friedlander, ‘Adaptive, Interpolated
Time-Delay Estimation’, IEEE Transactions on Aerospace and Electronic Systems,
vol.21, no.2, pp.180-199, 1985 March

[Steiglitz] Ken Steiglitz, A Digital Signal Processing Primer, 1996, Addison-Wesley
Publishing Company, 2725 Sand Hill Road, Menlo Park CA, 94025 USA

[Strawn] John Strawn, editor, Digital Audio Signal Processing, 1985, A-R Editions, Inc.,
801 Deming Way, Madison Wisconsin, 53717 USA

[Thoen] Bradford K. Thoen, ‘Practical Aspects of Digital Sinewave Generation Using a
Second-Order Difference Equation’, IEEE Transactions on Circuits and Systems,
vol.CAS-32, no.5, pp.510-511, 1985 May

197

[Vaidyanathan] P.P. Vaidyanathan, Multirate Systems and Filter Banks, 1993,
Prentice-Hall, Inc., Englewood Cliffs NJ, 07632 USA

[Välimäki/Laakso] V. Välimäki, T. I. Laakso, J. Mackenzie, ‘Elimination of Transients in
Time-Varying Allpass Fractional Delay Filters with Application to Digital Waveguide
Modeling’, Proceedings of the International Computer Music Conference, Banff, 1995,
pp.327-334, ICMA, 2040 Polk St. #330, San Francisco CA, 94109 USA

[Vanderkooy/Lipshitz] John Vanderkooy, Stanley P. Lipshitz, ‘Digital Dither: Signal
Processing with Resolution Far Below the Least Significant Bit’, Audio in Digital Times,
The Proceedings of the Audio Engineering Society 7th International Conference, Toronto,
pp.87-96, 1989 May�14-17, AES, 60 East 42nd St., New�York NY, 10165 USA

[Wolfram] Wolfram Research, Inc., Mathematica, Version 2, 1994,
Champaign Illinois, 61820 USA

198

Acknowledgements
The ESP2 chip was designed over a four year period beginning in 1990. The three
principal designers were David Andreas, Jon Dattorro, and J. William Mauchly (son of
John V. Mauchly, inventor of the ENIAC computer [Slater]). Andreas is the principal
architect of the circuitry. He made the early computer models so as to simulate the chip
prior to fabrication, and he provided the original Hardware Specification. Later in the
development, David Dura planned the layout and implemented the chip in its entirety
employing custom VLSI. Dura dedicated himself to chip debug and revision. Michael
Arnao wrote the assembler. The ESP2 rests on the shoulders of its predecessor, the ESP
chip. Although the two chips are divergent, the essence of that first design is retained. In
this light, the pioneering work of Stephen Hoge and David DiOrio is recognized.

199

Appendix I
ESP2 Scheduler Notes: Rules for DIL and DOL Availability

We list the rules for DIL and DOL availability in scheduling external-memory accesses:

Glossary

AGEN read: an AGEN operation that reads the contents of an external-memory location
into a DIL

AGEN write: an AGEN operation that writes the contents of a DOL to an external-
memory location

defensive criterion: a criterion for determining DIL or DOL availability that tests
whether the external-memory access currently being scheduled would be corrupted by a
previously-scheduled access

initial operand: the topmost unquoted operand (A, B, C, D, E, F, or G) in a quoted-
reference chain; this operand initializes the chain

isolated reference: an external-memory reference that is not the initial operand in a
quoted-reference chain

latency: the difference between the number of the instruction where a register (GPR,
AOR, or SPR) is written by a function unit (MAC, ALU, or AGEN) and the number of
the instruction where the contents of that register become available as a source operand in
a particular function unit

protective criterion: a criterion for determining DIL or DOL availability that tests
whether a previously-scheduled external-memory access would be corrupted by the
access currently being scheduled

quoted-reference chain: one or more quoted similar external-memory references
preceded by an unquoted similar external-memory reference

request instruction: an instruction where an external-memory reference appears in the
MAC unit or ALU as a source or destination operand

similar external-memory references: two or more external-memory references that refer
to the same element of the same external-memory array in the same region and that have
the same UPDATE BASE mode and same Plus-One addressing mode

200

target instruction: an instruction where an AGEN operation is to be coded by the
assembler in response to an external-memory request from the MAC unit or ALU

terminal operand: the bottommost operand (A, B, D, or E) in a quoted-reference chain

Variables

’A_TO_B = k’ means that the latency from unit A to unit B is k instructions:

MAC_TO_MAC = 1
MAC_TO_ALU = 1
MAC_TO_AGEN = 0

ALU_TO_MAC = 2
ALU_TO_ALU = 1
ALU_TO_AGEN = 1

AGEN_TO_MAC = 2

AGEN_TO_ALU = 2

’A_PREC_B = k’ means that if a DOL is written by unit B at instruction n, and is
subsequently written by unit A at instruction n+k, then at instruction
(n+k+A_TO_AGEN) the DOL will contain data from the latter write:

MAC_PREC_MAC = 1
MAC_PREC_ALU = 1

ALU_PREC_MAC = 0

ALU_PREC_ALU = 1

Scheduling Operations

There are four principal scheduling operations, performed in the following order:

[1] quoted-reference chains
[2] priority external-memory writes
[3] external-memory reads
[4] remaining external-memory writes

201

Quoted-Reference Chains

Quoted-reference chains are formed starting at instruction progsize-1 (the last
instruction of a program), and working toward instruction 0 (the first instruction). In
locating terminal operands, source-code scanning is performed from right to left,
traversing operands in the following order: B, A, E, D. The first occurrence of a particular
quoted external-memory reference thus encountered becomes the terminal operand of a
chain. Further quoted similar external-memory references become links in the chain,
which extends to the closest unquoted similar reference for which inter-unit latencies are
resolved; this reference becomes the initial operand of the chain.

Priority External-Memory Writes

Priority external-memory writes are scheduled starting at instruction 0 and working
toward instruction progsize-1. A function unit, UNIT (MAC or ALU), can write
DOLn at instruction request and schedule an AGEN priority-write at instruction
target if

[1] request+UNIT_TO_AGEN = target < progsize

[2] no AGEN instruction has already been placed at target instruction

and all defensive and protective criteria (as described below) for external-memory writes
are true.

External-Memory Reads

External-memory reads are scheduled starting at instruction progsize-1 and working
toward instruction 0. A function unit, UNIT (MAC or ALU), can read DILn at
instruction request and schedule an AGEN read at instruction target if

[1] 0 <= target+AGEN_TO_UNIT <= request < progsize

[2] no AGEN instruction has already been placed at target instruction

and all the following defensive and protective criteria are true:

202

defensive criteria:

[1] the external-memory read to be scheduled is an isolated reference, and (target
== request-AGEN_TO_UNIT) or neither MAC unit nor ALU has already scheduled
an AGEN read using DILn in range

[target+1, request-AGEN_TO_UNIT]

or

the external-memory read to be scheduled initializes a quoted-reference chain, and neither
MAC unit nor ALU has already scheduled an AGEN read using DILn in range

[target+1, lastref-AGEN_TO_MAC] if terminal operand in MAC unit

[target+1, lastref-AGEN_TO_ALU] if terminal operand in ALU

protective criteria:

[1] neither MAC unit nor ALU has already scheduled an AGEN read using DILn in range

[0, target-1]

from request instruction in range

[target+AGEN_TO_UNIT, progsize-1]

[2] neither MAC unit nor ALU has already assigned DILn to a quoted-reference chain
whose AGEN read occurs in range

[0, target-1]

and that terminates in range

[target+AGEN_TO_UNIT, progsize-1]

Note that if AGEN reads are scheduled starting from the bottom of the program and
working toward the top, and the closest available AGEN instruction is always chosen as
the target instruction, then both protective criteria are always true.

External-Memory Writes

External-memory writes are scheduled starting at instruction 0 and working toward

instruction progsize-1. A function unit, UNIT (MAC or ALU), can write DOLn at

instruction request and schedule an AGEN write at instruction target if

203

[1] 0 <= request+UNIT_TO_AGEN <= target < progsize

[2] no AGEN instruction has already been placed at target instruction

and all the following defensive and protective criteria are true:

defensive criteria:

[1] the external-memory write to be scheduled is an isolated reference, and MAC unit has

not already written DOLn in range

[request+MAC_PREC_UNIT, target-MAC_TO_AGEN]

or

the external-memory write to be scheduled initializes a quoted-reference chain, and MAC

unit has not already written DOLn in range

[request+MAC_PREC_UNIT,

 MAX(lastref-MAC_TO_MAC, target-MAC_TO_AGEN)]

 if terminal operand in MAC unit

[request+MAC_PREC_UNIT,

 MAX(lastref-MAC_TO_ALU, target-MAC_TO_AGEN)]

 if terminal operand in ALU

where lastref is the number of the instruction of the last quoted reference in the chain

[2] the external-memory write to be scheduled is an isolated reference, and ALU has not

already written DOLn in range

[request+ALU_PREC_UNIT, target-ALU_TO_AGEN]

or

the external-memory write to be scheduled initializes a quoted-reference chain, and ALU

has not already written DOLn in range

[request+ALU_PREC_UNIT,

 MAX(lastref-ALU_TO_MAC, target-ALU_TO_AGEN)]

 if terminal operand in MAC unit

[request+ALU_PREC_UNIT,

 MAX(lastref-ALU_TO_ALU, target-ALU_TO_AGEN)]

 if terminal operand in ALU

204

protective criteria:

[1] MAC unit has not already scheduled an AGEN write using DOLn in range

[request+UNIT_TO_AGEN, progsize-1]

from request instruction in range

[0, request-UNIT_PREC_MAC]

[2] ALU has not already scheduled an AGEN write using DOLn in range

[request+UNIT_TO_AGEN, progsize-1]

from request instruction in range

[0, request-UNIT_PREC_ALU]

[3] MAC unit has not already assigned DOLn to a quoted-reference chain that terminates in
range

[request+UNIT_TO_MAC, progsize-1] if terminal operand in MAC unit

[request+UNIT_TO_ALU, progsize-1] if terminal operand in ALU

and begins in range

[0, request-UNIT_PREC_MAC]

 [4] ALU has not already assigned DOLn to a quoted-reference chain that terminates in
range

[request+UNIT_TO_MAC, progsize-1] if terminal operand in MAC unit

[request+UNIT_TO_ALU, progsize-1] if terminal operand in ALU

and begins in range

[0, request-UNIT_PREC_ALU]

.

205

Appendix II
Important Theorems

We present the following without proof as they are evident to the most casual observer:

Reagan’s Theorem
There exist two types of matter in the universe: matter and doesn’t matter.

Lemma predicating existence of the Discrete Time Laplace Transform
There never lived a mathematician named Z.

Quod Erat Demonstrandum.

206

Appendix III
Reverb Recollections
Ref.: Reverberation Application
--

 December 21, 1994
Dear Jon,

What you wrote was fine but it stimulated my memory of additional snippets. Feel free
to use what you want.

I had a personal conversation with Manfred Schroeder in the late 1970’s and I asked him
the question about what the phrase ’maximal incommensurate’ delay values meant, as it
appeared in one of his reverberation papers. His answer was particularly interesting.
This is a paraphrase based on my tired memory:

"We did the electronic reverberation for amusement because we thought it would be fun.
Since it took the better part of a day to do 10 seconds of reverberation we only ran one
sample of music. The notion of delay time selections was random in that we just picked a
bunch of numbers and there was no mathematical basis. We just wanted to prove it could
be done."

He never related this work to his more profound mathematical and perceptual research,
specifically the work on the required 3 eigentone per Hz density and the frequency-phase
statistics in a random physical space.

The original EMT reverberator, model 250 operating at a 32�kHz sample rate, used a
main memory of 8k words and the required eigentone density was emulated entirely by
randomizing delaylines. Another interesting fact is that colorless reverberation, using
allpass structures, is perceptually not colorless. Even white noise passed through an
allpass will not sound like real white noise. When passed through many such allpass
structures, it in fact sounds like a machine shop rather than random noise. It still
measures spectrally flat. The reason is that frequency regions get bunched in time. It is
very much like a chirped sine wave in radar having a purely flat spectrum but is very
different from white noise. The 2nd and higher order statistical terms out of an allpass are
very, very different from a real random process. The utility of an allpass is to pass all
frequencies through so that each allpass can see the same spectral density, otherwise
comb peaks would align and dominate. Parallel structures of non-allpass elements
achieve a similar issue in that each structure gets fed the full spectrum. Allpass elements
are more critical for small delay values. An allpass within a larger loop must be used
with great care since it has a sine-like variation in group delay. Hence, the effective loop
time, and reverberation time, varies with frequency. After many trips around the loop,
the result will be very colored.

207

Schroeder’s had several analyses about reverberation but his 3 eigentone per Hz theory,
which maps to 3 seconds of memory, can be looked at in many ways. His result was
empirical based on listening tests. Consider two eigentones, or poles, separated by 1 Hz
and located in the s-plane with a real part of -10 Hz. When excited this will produce
two damped exponentially decaying frequencies which differ by 1 Hz. Hence there will
be a 1 Hz envelope beat which is clearly audible. Now add other eigentones, randomly
spaced but still at a distance of -10 Hz. Assume 10 such eigentone. All of them will
beat with each other producing a random envelope having a spectrum which is crudely
flat from 0 to 10 Hz. One can do this simulation in closed form with variable excitation
of each eigentone. Schroeder’s result actually depends on the nominal reverberation time
since that determines how many eigentone will get excited by a narrow-band input. In
the early reverberation boxes, with only 150 ms of reverberation, typically only a few
tones would be excited. The envelope had a clear periodicity of 6 Hz on average. It
sounds bad. Some regions had only two eigentones excited with a distance of 2 Hz which
was even worse. Development was much more exciting with such limited memory.
Today one can use 1 second of DRAM memory. Many simpler structures will thus
produce good reverberation.

The perceptual simulations deviated from physical reality in many ways. For example, a
natural three dimensional space has an increasing eigentone density which is proportional
to the square of frequency. All electronic simulations tend to have a constant density.
The reason is that in a three dimensional space, the speed of sound along a dimension is
proportional to the sine of the wave front direction, whereas in an electronic structure it is
always constant.

Well, that is what I remember so do what you wish with it. Best of luck.

 Sincerely yours,

 Barry Blesser

 Blesser Associates
 Electronics & Software Consultants
 P.O. Box 155
 Belmont MA, 02178 USA

208

Appendix IV
Truncation Noise Spectral Level vs. Total Noise Power
Ref.: Chamberlin Filter Topology in Musical Filtering

We seek the relationship of truncation noise spectral level, n(ejωT), to total noise power,
N, because we wish to prove that for every additional 6 dB of S/N, the noise spectral
level drops by the same amount. The analysis of truncation noise is much like that of
quantization noise. [Opp/Sch,pg.353] It is interesting that the classical derivation of
quantization noise [Opp/Sch,pg.119] is statistical and does not include any consideration
of sample rate. We therefore expect our results to reflect this.

Here we regard the truncation noise signal as deterministic, and we consider only
normalized signal and noise spectra such that a real sinusoid of infinite duration has finite
average power S=1/2 (and a complex sinusoid has average power S=1). We then pose the
problem: 10 log S/N = 96 dB for a real sinusoid; find the truncation noise power spectral
level. 96 dB is the approximate expected signal to noise ratio for a 16-bit fidelity signal
(6�dB per bit), [Opp/Sch,pg.123] and we set S=1 to simplify the discussion. We then
find the total noise power solving,

 10 log N = -96

where165

N = | n(ejωT) |2 df (IV-n0)∫
0

Fs
T
M

N = n1 df (IV-n1)M T∫
0

Fs
2

where T = 1/Fs , and where M is the number of points in the data record, and where n1

is the normalized average noise spectral magnitude; i.e., the average of |�n(ejωT)�|�/�M
over frequency. Solving, we find:

 n1
2 = N/M (IV-n2)

which is independent of sample rate, as expected. This equation indicates that noise
power spectral level is proportional to total noise power. This means that if total noise
power drops by 6 dB, then so will its spectral level (assuming M constant). We needed to
know this to justify the claim (supporting fidelity Criterion 1 in our example from the text) that the
average difference in truncation noise spectral level between a 20-bit and a 16-bit
quantized signal is 24�dB (=(20-16)�x�6.02�dB).

165There is confusion in the various DSP textbooks regarding expression (IV-n0). We believe
that [Jackson] is correct in his expression for the Parseval energy relation, while the modification
to his expression to yield the power relation comes from [Luthra].

209

Appendix V
Filter Errata in the Literature
Ref.: Musical Filtering

A mistake has been perpetuated regarding the center frequency of the second-order digital
filter.

The polar representation of complex conjugate filter poles is often found, correctly
written, as

 zpole = R e±jθ (zp1)

The erroneous hypothesis can be recognized wherever filter center radian frequency, ωc�,

is ascribed to the radian pole angle,�θ�. Hence, the distinction between center frequency
and pole frequency is obscured in the literature.166 There it is argued that for high
selectivity, this distinction is of little practical importance. But that tenuous assumption
of practical equivalence has, consequently, promulgated specious theoretical conclusions
within the audio community.

One such erroneous conclusion is that the perfect resonator transfer (hrz), for any given
center frequency, does not have a peak magnitude exactly equal to 1 when evaluated on
the unit circle in the z-plane. The errant proof evaluates (hrz) at the resonant frequency

(i.e.,�at��z=ejθ) in complete disregard of the pole radius, R. Evaluation at the true center

frequency (i.e.,�at��z=ejωc) given by (wc1) shows that conclusion to be false; i.e., it is true
that the perfect resonator as given by (hrz) always has a peak gain of exactly unity.

We can establish a correspondence between pole and center frequency by equating the
denominator of the general second-order transfer function (written in terms of the pole
radius and angle (zp1) [Jackson,ch.4.3] [Dattorro,(27)]) to the perfect resonator (hrz):167

 (1/2)(1 - β) (1 - z-2) (1/2)(1 - β) (1 - z-2)

 Hr(z) = ---------------------------------- = ---------------------------------- (hrz)

 1 - 2 R cos(θ) z-1 + R2 z-2 1 + γ (1 + β) z-1 + β z-2

166The resonant frequency is that frequency at which a filter rings when excited by an impulse. The
resonant frequency is the pole frequency, which is the same as the pole angle, θ, in the z-plane. The
center frequency is the frequency at peak magnitude transfer in the steady state; when a filter is
excited by a sinusoid of infinite duration. Generally, the center and resonant frequencies are not
identical. [Steiglitz,ch.5.5]
167The poles occur in complex conjugate pairs when the filter coefficients of z (i.e., γ and β)
are real. When the filter coefficients are real, then it is easily shown that the filter’s impulse
response must also be real.

210

The identifications we can easily deduce using (wc1) are:

 β = R2

 -2 R cos(θ)
 γ = --------------- = -cos(ωc)

 1 + R2

This proves that the only instance where center frequency ωc would be the same as

second-order pole (or resonant) frequency θ is for conjugate poles right on the unit circle
(R�=�1). But in that circumstance one has an oscillator, not a filter.

These results can be extended to the resonator in general. Similar conclusions can be
drawn from examination of the second-order all-pole transfer (hchz), and from the
second-order all-zero transfer such as the one in Figure BN.

An instance where center frequency is identical to pole frequency is for the case of the
first-order resonator. The equivalence is independent of pole radius, R, unlike the
second-order case. This instance may be the reason for the propagation of the erratum
regarding the second-order case. The transfer of the first-order resonator is:

 1 - R
Fr(z) = -----------------

 1 - R ejθ z-1

This filter has only one pole. But notice that the one filter coefficient is complex, in
general. Hence the impulse response of this filter cannot be real. One may surmise that
there must be some interaction among multiple poles in the z-plane that destroys radial
symmetry.

211

Appendix VI

Assembly Listing
The .lst file output of the assembler (�.e2 source file input, by convention) shows the
assembled code in ’half-human, half-machine’ format. Each operand address field
(A,B,C,D,E,F,G) and each opcode is shown in a numerical form before it is packed into
one large 96-bit microinstruction word. The listing reports statistics such as the program
size, number of registers used, their initialization contents, everybody’s address, declared
but unused stuff, etc.

For a detailed example, see the Linear Interpolation Application.

Assembler Invocation
The command line switch list appears whenever the assembler is invoked without a
command line source file (.e2) input:

ESP2 Assembler Version X.XX [3 June 2054]

usage: esp2asm -abdhlnorsx <src-file>

switches:

-a [<file>] produce AGEN listing file (.agn)

-b produce binary object (.bin) instead of C object (.o)

-d include debug data in object file

-h <file> rename header file (.hdr)

-l [<file>] produce listing file (.lst)

-n do not inhibit .o, .bin, .hdr, or .asm upon error

-o <file> rename object file

-r <rev no.> place chip revision number in .o, .bin, and .asm

-s [<file>] produce simulator input file (.asm)

-x <files> delete named files prior to assembly

Regarding only the notation immediately above:
[�] means that what is enclosed is optional.
<�> means that what is enclosed is non-literal; so <file> means your file name.

The binary object (.bin) is in Ensoniq format. The C object (.o) is an ASCII file, a
C-language compatible declaration of the binary object. Each output file holds assembly
information equivalent to the other.

212

Appendix VII
Assembly Errors and Warnings

Need expansion and explanation of all errors and warning messages in esperrs.h

213

Appendix VIII
ESP2 Assembler functions requiring implementation or revision
beyond Version�0.52

Assembler BUGS

-BUG: (v0.51)
error: ’VoiceL’: external-memory reference in expression
error: ’&’: argument must be external-memory reference
error: ’VoiceL’: uninitialized AOR (v0.51)
DEFREGION V
 VoiceL[2048]
 delayL = &VoiceL[350] q8 !this should be legal

-BUG: (v0.51)
error: ’MINUS1’: uninitialized SPR
DEFGPR
 k = MINUS1 ! cases: ZERO, HALF, MINUS1, ONE

-BUG: (v0.51) PROGRAM name should appear in header file. Program name
should be made a unique identifier, as are other user-definable names; hence a
reserved symbol.

-BUG: (from tunable speaker algorithm. v0.51) "error: ’m_mid2’: syntax error"
DEFCONST Q_MID2 = .5
DEFGPR Q_mid2 = Q_MID2 q21 @$63 Qm_mid2 = -Q_MID2 q21 @$64

-BUG: (v0.52)
Preset AORs Address Contents (Base 10) Region Reference

MAC $004, line 61 $2fb $000000 0 V VoiceL[�]

AORs allocated for computed addressing [�] require null *** initialization.

214

-BUG: (v0.51)
warning: ’gfgf’: never used

 DEFREGION R
 Xoutput[256]

 gfgf = &Xoutput[3]
 CODE
 MOV #3 > &Xoutput[3]

Yet gfgf appears in .agn .

-BUG: (v0.51)
... RD *(INDIRDEC)R > DILD
Appears as RD INDIRDEC > DILD in .agn�.

-BUG: (v0.51) Item #7 in SPR Hazards, HOST_CNTL_SPR ok as MAC unit
destination.

-BUG: (v0.51) from revs.txt :
’Version 0.45 [24 March 1995]
 6 removed global-SPR references from .hdr file (could have clashed
 with SPR defines in downloader) [syms.c]’
The above item requires undoing. Proper solution is for particular
product/programmer convention which abides by rule not to type GLOBAL within
DEFSPR.

-BUG: (v0.51)
MAC error: ’ONE’: illegal type in expression
MOV #ONE > MACP
The value of a register name is its register address.

-BUG: (v0.52) Following should issue warning for never-used GPRs when there is no
appearance of some_gprs in code.
DEFGPR
 some_gprs = 1 @$2
 (some_gprs, 1) = 7

215

Assembler ERRORS and WARNING messages requiring
implementation or revision:

 1.) RD *(BASE += (aor)P)R > DIL0
 This syntax is confusing because it implies that the BASE from one
region is updated while the memory access is from a different region.

 2.) Negative delayline index now yields error. Calculation should be
same as for positive index, no error. If address offset goes out of region
modulus, then error.

 3.) PROGSIZE <= 1025
 Should produce error: in excess of physical limit (1024).

 9.) Currently there is no mention of quoted destination delayspec in ESP2
Scheduler Notes or Soft Spec. as an error condition, but assembly error is
generated. There should be no error.

10.) Warning for SER SPR input or output on queued line following BIOZ (or
BIOZNORFSH) instruction. Warning states: ’serial access may not be current’.
Preventing output there avoids the Haas effect. The ’following queued line’ is not
necessarily contiguous.

11.) Quoting from the section on AGEN:
‘AOR Allocation
In the code, any reference to one from the delayspec set: d[n], &d[n], or *&d[n],
will cause allocation of the same AOR, allocation occurring only once. Once allocated,
reference to the set calls out an existing AOR. But if an AOR assignment of identical
initialized contents, in the same region, pre-exists in the declarations, then no new
allocation will occur.’
When in the code the assembler substitutes a pre-existing AOR from the declarations, a
warning should be issued notifying the programmer. This is because programmer
initialized AORs are sometimes used for purposes other than addressing. This booby-trap
happens often in the case of AORs initialized to 0.

216

12.) Warning for no refresh of internal registers. This warning would be
caused by the complete lack of ALU NOP, BIOZ, or HOST instructions or MAC
unit RFSH pseudo instructions. Any one of these instructions executed with a
minimum frequency of approximately 5000 Hz is sufficient to refresh all internal
registers. (Must not include BIOZNORFSH or HOSTNORFSH in criterion.
Conditionally executed instructions should be considered as providing no
refresh.)

13.) assembler v0.51, Hardware Spec, section 4.1, second ASSEMBLER
NOTE regarding the ’* cases of Jcc...’. New Warning for improper use of REF
SPR, as noted.
 13a.) assembler v0.51, amendment to first ASSEMBLER NOTE; ’The
assembler should detect the use of the REF, INDIRECT, INDIRINC, and
INDIRDEC...’, Hardware Spec, section 4.1, adds REF to list of keywords. Only
instruction impacted is REPT.

14.) Hardware spec., SPR Hazards section, number 9.

217

 Required Assembler Revision

- Want #&d[n] to allocate only GPR in code. Reference is to pre-existing AOR
address. Want no error upon forward reference in code.

 - Want pointer arithmetic within DEFREGION using & . Presently can do
math but must use # within DEFREGION.

- qN; for N made to be a constant expression (i.e., composed of symbolic constants
and/or numbers). (Recommend elimination of capital q for binary-radix notation; interference with

region identifier of same name.)

- In .lst put & in front of references to Preset AORs where appropriate.
Alternately, change the heading ’Reference’ to ’Dereference’.

- The relocation bit-map for the relocating downloader in the listing (.lst, v0.52) is
confusing because it appears that the information is part of the instruction word. This
might be remedied by not supplying a header mnemonic, as is presently the case for line
numbers appearing at the far left; this is how the listing currently appears:
 | | | | | | | | | | | | | | .--- L: AGEN DATA LATCH

 | | | | | | | | | | | | | | | .- s: AGEN SKIP BIT

 | | | | | | | | | | | | | | | | B: RELOC BITMAP

 | | | | | | | | | | | | | | | | |

 D E F OP S s A B C OP s G OP R L s B

000 72 1d4 1cc 3ff 02 6 0 3ff 3ff 3ff 19 0 2f5 0 7 0 0 01

This is the recommended revision:
 | | | | | | | | | | | | | | .--- L: AGEN DATA LATCH

 | | | | | | | | | | | | | | | .- s: AGEN SKIP BIT

 | | | | | | | | | | | | | | | | . RELOC BITMAP

 | | | | | | | | | | | | | | | | |

 D E F OP S s A B C OP s G OP R L s

000 72 1d4 1cc 3ff 02 6 0 3ff 3ff 3ff 19 0 2f5 0 7 0 0 01

218

 ESP2 ASSEMBLER, REQUIRED ENHANCEMENTS

- AGEN listing should retain fully-commented lines in both declarations and CODE to
enhance readability, and for reuse as source. See Linear Interpolation Application
AGEN listing, for example.

- Explicit declaration of available physical external memory locations for bounds
checking.

- Turn off specific warnings, in declarations.

- If E operand is AOR, while D operand is not, swap the two operands with notification,
but not if indirection is involved.

- New switch in command line: -r
 This places chip revision number in microcode (.o, .bin) and .asm. Update assembler
invocation.
- Clean up switch list as in section, Assembler Invocation.

- Allow forward reference.

- In DEFREGION, allow declaration of overlapping delaylines with warning.

- Allow declaration of overlapping regions with warning.

- Allow declaration of overlapping register arrays with warning.

- Language simplification of register INDIRECTion.

- Interactive loop analyzer for estimation of program run-time w/r sample period.

- Initialize internal registers from declarations using filename.

- Initialize arrays of internal registers without allocation. In this circumstance there
should be no warning for registers never used.

- Make binary-radix notation employ only lower case q, while region reference employs
only upper case Q (as region reference presently does, v0.52).

219

Appendix IX
MultiRate Audio Processes
Ref.: Interpolation Applications168

Figure ISS. Time-limited input signal and fictitious real spectrum.

<=>

ω

.

π−π

 X (e) jω

4
3
2
1

x(n)

n

L

Figure UV. Upsampler, Vaidyanathan.

<=>

X(Ζ)

n

x(n / L)

4
3
2
1
0

ω

.

π−π

(L=3)

 X (e jωL)

π L

= ∑ x(k) δ(n - kL)
k

(c)

(b)

(a)
X(ΖL)YI(Ζ) =

168Thanks go to Scott Levine for his careful review of this Appendix.

220

 e jω/2 { X (e jω/2) + e-jπ X (e j(ω-2π)/2) } / 2

 { X (e jω/2) - X (e j(ω-2π)/2) }

Figure DSB. Generalized downsampler, Vaidyanathan

<=>

. . .

π−π ω

. . .

(a)

4
3
2
1

n

x(M n + l)

(b)

(c)

l=1, M=2

WM = e-j2π/Μ

= ∑ x(p+l) δ(Mn - p)
p

X(Ζ)
Ζl M

∑ 1
M

 X(Ζ1/MWM)k(Ζ1/MWM)
lk

M-1

k=0
YD(Ζ) =

We call the downsampler in Figure DSB (a) generalized because of the preceding
advance operator. [Vaidyanathan,pg.122] The integer advance l finds use when either
positive or negative.

The frequency domain decimation equation in Figure DSB (a) is a true Z�transform that is
derived from the time domain expression for decimation in (b), once we make the
substitution:

∑
k=0

M-1
WM

 1
M

 ∑ δ(Mn - p) = -kp
p=-∞

∞

(WID)

for -∞ < n < ∞�. δ(n) is the Kronecker delta function. The identity (WID) is the
bridge between the two domains.

221

We now derive the generalized decimation equation for l an arbitrary integer advance, and
for M the rate of decimation: Taking the Z transform,

() () znMzY −

∞−=

∞
n

n
D += lx

First we substitute the equivalent form of the signal x(Mn+l) whose time index remains n.
Then we apply (WID).

() () ()
















()
















() Wzp
M
1

zW
M
1

p

zpnMpzY

−−

∞−=

∞

−−

=

−

∞−=

∞

−

∞−=

∞

∞−=

∞

M
pk

pk

M
pk

0k

1M

n

pn
D

+=

+=

−δ+=

lx

lx

lx

M
p

M
p

M
p

Since the sum over k only has value when p=Mn by (WID), then there is no complex root
of z taken; hence that exponentiation is unambiguous. Now we let p+l�->�r�.

()
() ()

() () () ()=

=

WzXWz
M
1

zY

Wzr
M
1

M
k

M
k

0k

1M

D

M
rk

rk

=

−

−−−

∞−=

∞
x

−

M
1

M
1

M
r l

l

l

iced

Equation (deci) is the desired result expressed in terms of the Z transform, X(z).

The two equivalent figures, Figure CMPR and Figure CMPI, tie together the formal analysis in
terms of sample rate conversion ratio, [Crochiere/Rabiner,pg.40,pg.81] [Vaidyanathan,pg.131]
and our interpretation of the interpolation process169 in terms of the required fractional sample
delay. H(z) in Figure CMPR represents the formal prototype interpolation filter. When the
interpolation process is discussed as in the Applications in terms of the required fractional delay,
the upsampling rate L is implicit in the sheer resolution of the polyphase filter coefficients.
Hence the implied value of L is 223 because we require no less than a 24-bit processor for audio.

169We often refer to the complete process depicted in Figure CMPR and Figure CMPI as ‘interpolation’.
That is an abuse of terminology, strictly speaking, as both the process of interpolation and decimation are
carried out in those figures, having H(z) simultaneously serving both purposes. In Figure CMPR, there is
an upsampler that serves to insert L-1 zeroes between every incoming sample, and there is a downsampler
that discards M-1 out of every M samples. Upsampling and downsampling combined with the appropriate
digital filter respectively describe the process of interpolation and decimation. The role of the upsampler is
played by the commutator in Figure CMPI.

222

Each polyphase filter, represented by El(z) in Figure CMPI, ideally presents a different
fractional sample delay to a signal. More accurately, for the idealized formulation of
interpolation by a rational factor, each polyphase filter is exactly allpass;

 El(e
jω) = e j(ω - 2π m[((ω+π))2π])l / L ; m[.]�=�0�->�L-1 (polyphi)

where l is the polyphase filter number, L is the upsampling rate, the integer m[.] is the
prototype replication number or the frequency-band number of an Lth-band (Nyquist(L))
prototype. The phase is a disjunct function of m[.] but linear in the baseband (m[.]=0) of all
the ideal polyphase filters. [Vaidyanathan,pg.168,109,124] [Crochiere/Rabiner,ch.4.2.2]
Hence the lth polyphase filter represents an advance of l/L fractional samples in the
baseband.

The proper interpretation of this idealized polyphase filter (polyphi) requires m to be a

modulo function of ω. For every modulo 2π of ω, m[.] increments within bounds; i.e.,

()()[] ()()()()  ()()
| | | |()()()() | | ()() 0;

2
1L

2
1L

0;
22

m

<π+ω
π

π+ω−−=
π

π+ω−π+ω−−≡

>π+ω
π

π+ω=
π

π+ω−π+ω≡π+ω

π

π
2π

LL

2

LL

2

where the double parentheses denotes the modulo operator; the real modulus 2π and the
integer modulus L�.

This idealization presumes that the prototype interpolation filter is perfectly bandlimited. To
construct the prototype from these ideal polyphase filters (polyphi) we use (polyh).

H(Ζ) = Ζ-l El(ΖL) (polyh)∑
l=0

L-1

Now, for every modulo 2π/L of ω, m[.] increments. So we have

() ()()[]()

()()[]

H

=

=

e

eee

m2j

0

1L

m2Ljj

0

1L
j

π−

=

−

π−ωω−

=

−
ω

l

l

l

π+ω

π+ω

L

L

2

2

π

π

l

l

L

L

From (WID), this only has value for m[.]=0. Hence,

() | |
| |0

LH

=
=ejω

L
;

L
;

π<ω<π

π<ω

223

H(Ζ) M

Figure CMPR. General model of interpolation
 by a rational factor.

Y(Ζ)X(Ζ) L
 Step
 Rate

 Output
 Rate

 Input
 Rate

E
0
(Ζ)

E
1
(Ζ)

E
2
(Ζ)

E
L-1

(Ζ)

Figure CMPI. Ideal commutator model of interpolation
 showing the many polyphase filters.

X(Ζ)

 Step
 Rate

l

M Y(Ζ)

224

The transfer function of the commutator filter circuit in Figure CMPI (not including the
downsampler) can be described using a generalization of (polyh):

H(Ζ) = Ζ-(l - lo) El(ΖL) (polyhc)∑
l=0

L-1

where lo is the starting phase of the commutator; i.e., the initial position of the brush

when the input sample x[n] arrives. The action of the downsampler170 is synchronized
to lo such that the very first sample found at position lo is passed. Reversing the brush

direction would simply change one sign of the z exponent in (polyhc); i.e., to z(l-lo)�.

The individual El(z) in Figure CMPI are time-invariant and correspond to one of the
circuits shown in the Applications in Figure PL2, and Figure PA or Figure�WPA (both

having the delay element connected), for the respective cases of Linear171 and ideal Allpass
interpolation. Recalling the nomenclature we previously devised for those circuits in
(lipdf), we fix the coefficients of the lth filter by making the identification:
τ�=�frac�=�l/L where τ is the desired fractional sample delay, frac is the polyphase
filter coefficient, l is the polyphase filter number, and L is the upsampling rate.172

By design, El(z) is a first-order two-tap non-causal FIR filter in the case of Linear interpolation;

Pl(Ζ) = (1 - l/L) + (l/L) Ζ-1

El(Ζ) = Ζ PL-l(Ζ)
;Linear interpolation

while in the case of ideal Allpass interpolation it is a first-order non-causal allpass filter;

 1 + (1 - l/L) Ζ-1
;ideal Allpass interpolation

El(Ζ) = Ζ PL-l(Ζ)

 (1 - l/L) + Ζ-1

Pl(Ζ) =

170Taking the view of Crochiere, for the moment, the downsampler would operate at the step
rate, L Fs�.
171Because the many polyphase filters of Linear interpolation require no long-term memory, we
were able to cheat in the actual implementation by using only the one circuit shown in Figure PL
instead of the entirety of Figure CMPI. Hence, we successfully implemented ideal Linear
interpolation. (We drop the term ‘ideal’ in the discussion.)
172The number of polyphase filters, L, in those applications was determined by the numerical
resolution of the registers holding the polyphase filter coefficients.
Also note that because of the method of implementation of all the applications that we discuss,
there is no division required in the capture of the coefficient, l/L.

225

 1 + Ζ-1 ;ideal Allpass interpolation
 with coefficient warping (sw.eq)

El(Ζ) = Ζ PL-l(Ζ)

+ Ζ-1

Pl(Ζ) = (1 + l/L)
(1 - l/L)

(1 + l/L)
(1 - l/L)

The three Pl(z) are the respective transfer functions of the circuits in Figure PL2, Figure�PA
(having the delay element connected), and Figure WPA (having the delay element connected).

For the prototype interpolation filter H(z) of Linear interpolation, the length of its triangular impulse
response is 2L as illustrated in Figure LinImpulse; that length, by design, spanning only two of the
original input sample periods. While in the case of ideal Allpass interpolation, the impulse response
is of infinite length as implied in Figure ALLImpulse. Both impulse responses have every Lth

sample equal to zero (except the central sample) thus identifying Lth-band (Nyquist(L)) prototype filters.
[Vaidyanathan,ch.4.6] [Renfors/Saramäki] Hence�the original input samples, x(n), appear unscathed
at the input to the downsampler in Figure�CMPI regardless of lo�. A second salient characteristic of

Lth-band filters is that�the frequency-shifted filter sums to level in the frequency domain like so;

�
() ()L

k

0k

1L

=

−
bhtlLWzH =

Figure LinImpulse. Impulse response of Linear interpolation
 prototype, L=10.

1

n0 10

h[n]

 h[n]

-10 10 20 30 40
n

Discrete-Time Domain Analysis

-0.4

-0.2

0.2

0.4

0.6

0.8

1

...

Figure ALLImpulse. Ideal Allpass prototype filter impulse response, L=10. [Evans]

226

No coefficient warping was used to make Figure�ALLImpulse. The initial linear slope of the
impulse response for the Allpass interpolation prototype in Figure�ALLImpulse is identical to that of
the Linear interpolation prototype. This can be explained best by observing Figure CMPI in the
case that M=1. The commutator brush visits all the polyphase filters within the same time period of
one input sample. If the input signal x(n)=δ(n) and lo=0, then what we shall see at the brush is the
impulse processed by each of the allpass polyphase filters. But on this first sweep, none of the
allpass filters has anything stored in its memory, so the filters are effectively scalar multipliers
increasing linearly with l�.

Now we show those two prototype filters in the frequency domain:

 H(ejω)

0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

ω/2π
Figure LINPROTO. Linear interpolation prototype filter transfer, L=10.

 |H(ejω)|

0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

ω/2π
Figure ALLPROTO. Ideal Allpass interpolation prototype filter transfer, L=10.

Figure LINPROTO and Figure ALLPROTO show the prototype filter magnitude for
Linear and Allpass interpolation (no coefficient warp), respectively, in the case of L=10.
For Linear interpolation we expect a positive real function of the form,

 sin2(ω L / 2)

 H(ejω) = ------------------ (asinc)
 L sin2(ω / 2)

227

The expression for the Allpass interpolation prototype is not so simple; neither is its
phase.

Of course, there is a mathematical description of any prototype interpolation filter in
terms of its polyphase filters, and vice versa.

() � () ()zEzzH = LL
=

=

−
hylop0;

0

1
l

l

−
l

l
o

∑ (polye)El(ΖL) =
k=0

L-1
 H(Ζ WL)

k(Ζ WL)
lk 1

 L

∑ Ζ-nLh(L n + l)

n=-∞

∞
= (polyeh)

Without significant loss of the generality of (polyhc), equation (polyh) describes well the action
of the commutator circuit presuming lo=0�. Equation (polye), a generalization of (lthb), is an
application of the decimation equation (deci) to H(z) for advance l�. Equation (polye) applies
directly to the polyphase decomposition of either IIR or FIR prototypes. The time domain
impulse response h(n) in (polyeh) of course corresponds to H(z).

Having established these definitions, (polye) and (polyh), we can write the equation for the
commutator model of Figure CMPI in the manner of Vaidyanathan.

 El(ΖL/M WM)
Lm

(polyy) Y(z) = (X(ΖL) H(z))

(Ζ1/M WM)
-lm X(ΖL/M WM)

Lm
L-1

∑ =

M

l=0

M-1

∑
m=0

 1
M

This formidable looking equation reduces nicely for special cases of interest:
e.g., when M=L, Y(z)�=�X(z)�E0(z)�. (Recall that E0(z)=1.)

When M=L/2, Y(z)�=�X(z2)�(E0(z2)�+�z-1�EL/2(z2)). In this case, the two polyphase filters are
attempting to form the half-band filter required of an effective upsampling and interpolation by the
factor 2=L/M (pretend that M=1).

The resulting expressions are not as simple when L/M is irreducible. The fascinating aspect of
(polyy), however, is that it gives us a fixed closed-form representation for the linear time-varying
circuit; that is Figure CMPI. The reader is encouraged to explore that further173 and thereby get a
better feel for the relationship to the commutator model in Figure�CMPI.

173Keep in mind the identity (WID).

228

Engineering Approximation to Ideal Allpass Interpolation

Rather than implement the ideal formal circuit in Figure CMPI in the case of Allpass
interpolation, our innovation (as proposed in the Applications) is to instead implement the
formal circuit in Figure�CMPIappx which is an approximation. The recursive elements
have been taken out of the polyphase filters in Figure CMPIappx. Now,

;Allpass interpolation Application

El(Ζ) = Ζ PL-l(Ζ)

Pl(Ζ) = (1 - l/L) + Ζ-1

As we saw in the Applications, this approximation to the ideal formulation is only
good,174 in terms of THD+N, for microtonal changes in pitch; M/L near 1.

E
0
(Ζ)

M

E
1
(Ζ)

E
2
(Ζ)

E
L-1

(Ζ)

Figure CMPIappx. Commutator model of proposed Allpass interpolator.

Y(Ζ)

X(Ζ)

 Step
 Rate

l

∑
Ζ-1-

l/L
x

for coefficient warping

or

(2 - l/L)
 l/L

174This circuit is in production in many successful electronic musical products.

229

Figure CMPIappx is the equivalent to Figure PA as is; without the feedforward delay
element connected. Each El(z) in Figure CMPIappx is nonrecursive, having no long-
term memory, and time-invariant. The idea of moving the recursive part of the polyphase
network outside of the commutator is not new. [Crochiere/Rabiner,ch.3.4] proposed
separating out the denominator like this, but their denominator was common to all the
polyphase filters. Note that the lone time-varying recursive circuit on the right-hand side
in Figure�CMPIappx only approximates the the L different time-invariant recursive
circuits that are supposed to be associated with each El(z) as in Figure CMPI.

One further refinement is our warping of the polyphase filter coefficients, computed in
real-time175 and employed in the approximation (Figure�CMPIappx) to the ideal network.

;Allpass interpolation Application
 with coefficient warping (sw.eq)

El(Ζ) = Ζ PL-l(Ζ)

Pl(Ζ) = (1 + l/L)
(1 - l/L) + Ζ-1

With warping, Figure CMPIappx becomes equivalent to Figure WPA as is. Using this
refinement, we measured an improvement of 26 dB in THD+N for microtonal pitch
changes. (That was discussed in the Applications.)

Distortion is inherent to any interpolation process. For large pitch change with little
distortion, one’s choice (in our context) is to revert to Linear interpolation at a high
sampling rate or to implement the network in Figure�CMPI for ideal Allpass
interpolation. We have simulated Figure CMPI in the C programming language using
16-bit polyphase filter coefficients. To achieve excellent results over a large range of
M/L for ideal Allpass interpolation, we find that coefficient warping (sw.eq) is
necessary, and that about L=28 recursive states must be stored. Since there are no time-
varying coefficients in the ideal circuit of Figure CMPI, associated transient phenomena
are a non-existent component of the signal distortion characteristics. The only transients
that arise there are due to the ZSR (Zero State Response) of the recursive polyphase filters of
Allpass interpolation. In Pitch Change/Shift applications of the ideal network, no one
polyphase filter is accessed more than another, in general. The ZSR transients will be
short for polyphase filters having small feedback coefficients, and longer for larger
coefficients. So we expect ZSR transients to be evenly distributed except in degenerate
cases.

Conversion: Vaidyanathan -> Crochiere
The Vaidyanathan method of analysis is simpler because it ignores changes in sample
rate, whereas the method of Crochiere does not. But note that in terms of the insertion or
deletion of samples, the action of the upsampler block (as shown in Figure UV (a) and
(b)) and the downsampler block (as in Figure DSB (a) and (b)) is respectively the same
for both the Crochiere and Vaidyanathan methods of analysis. While the two methods of
analysis are equally valuable, it is prudent to have a means of converting between the
two. Given the Vaidyanathan analysis, one simply substitutes every occurrence of z
with z’ (Crochiere’s�notation) which is defined equal to zM/L�, and one would re-label
any frequency domain graphs substituting ω’ (which equals ωM/L) in place of ω.

175This step is optional. Review (sw.eq) in the Applications section.

230

The conversion becomes exceedingly simple when either L or M is 1. For example,
we wish to convert Figure UV (M=1, L=3) to the Crochiere-style upsampler analysis.
Then we must re-label the abscissa using ω’ in place of ω, and we re-label the ordinate

as X(ejω’L) = X(ejω) in place of X(ejωL). This result is correct because Crochiere
always maintains the time period between the original samples; that is true for either
upsampling or downsampling.

Polyphase Perspectives

L H(Ζ) M

Sample Rate Conversion, Crochiere Analysis

Fs L*Fs L*Fs (L/M)*Fs

Figure CU. Contrasting the presumed computation rates
 of the various methods of analysis.

(a)

L H(Ζ) M

Pitch Change by Fixed Amount, M/L

(M/L)*Fs M*Fs M*Fs Fs

(b)

L H(Ζ) M

Sample Rate Conversion, Vaidyanathan Analysis

Fs Fs Fs Fs

(c)

The sample rate conversion ratio, L/M, corresponds to the Pitch Change/Shift ratio
inverse. We presume that the Pitch Change process in Figure CU (b) is performed on a
stored sample record. Samples appear at the input at a rate different from which they
were recorded. Such would be the case in contemporary sampler-type synthesizers.

231

Application Schema

Figure DTI. Applications of Discrete Time Interpolators.

L H(Ζ) M

Pitch Shift

Fs L*Fs L*Fs

(L/M)*Fs

ω

delayline
ρ Fs

Time Compansion

Recording
Medium

A/D
(L/M)*Fs

Undulating Pitch Change, Vibrato

(a)

(b)

(c)

(L/M)*Fs Fs

ω

ρ

splicer

splicer

(L/M(n))*Fs Fs
L H(Ζ) M(n)

Fs L*Fs L*Fs

ω

ρ

output (ρ) rate
input (ω) rate

 Pitch Ratio =

delayline

delayline

Time Compansion (compression/expansion) was accomplished before the days of DSP by
physically splicing magnetic recording-tape to alter the run-time without the concomitant
shift in perceived pitch. [Lee] Contemporary Compansion machines [Dattorro2400]
actually change the playback speed of the recording medium thereby performing the
manually tedious algorithm deftly in real time. The splicer in Figure�DTI controls
equestrian jumps by ρ-pointer to compensate for the disparity in sample rate between the
input and output of the delayline.176

The converse operation, Pitch Shift, alters the perceived pitch with no change to run-time.
In Figure DTI, both the Pitch Shift and Vibrato processes are performed in real time, and
unlike fixed Pitch Change shown in Figure CU, both maintain the macro-temporal
features of the original signal via propitious application of a delayline. The splicer is not
required for Vibrato since the mean sample rate across the delayline is Fs by design; i.e.,
the downsampler M is appropriately time-varying.

All three processes shown require some significant amount of nominal (average) transport
delay: To perform well upon polyphonic material, the Time Compansion and Pitch Shift

176Each jump target is determined by a very high speed autocorrelator seeking periodicity within
the delayline contents.

232

algorithms require as much as 60 ms. That much delay is easily perceptible and a
compromise is nearly always necessary. Vibrato, on the other hand, can be performed
well using only about 1 ms nominal delay.

Prototype Filter Design

Figure HPR. Prototype interpolation filter specs for signal bandwidth σ.

ω

L

ωp ωs

 H (e) jω

ωp ≤ min{π/M, σ/L, π/L}

 ωp ;π/M < σ/L

 ωp + 2(π-σ)/L ;otherwise
ωs =.

Figure HPR shows the constraints on the design of the prototype filter, in general, when
absolutely no aliasing of the signal, having (one-sided) bandwidth σ, is tolerated.177

Implicit from the axis labeling is that the desired frequency domain filter is real.

The techniques of interpolation that we considered in the Applications section did not
allow this level of control over the design of the prototype. We simply accepted what the
implementation offered because it was computationally attractive.

177Note that by the filter specification in Figure HPR, there can be a discontinuity in the
progression of the allowed transition-band slope as soon as σ/L creeps just past π/M. That
happens because the role of the prototype switches abruptly, now having the added responsibility
of further bandlimiting the signal. Admitting some small amount of aliasing mitigates that radical
change in requirement. If σ=π, however, then the desired filter is always square.

233

Appendix X
Oscillator Equation Derivation
Ref.: Oscillator Applications

Ζ-1

Ζ-1

 yq[n]

 y[n]

 yq[n+1]

 y[n+1]

∑

∑

xε
εx

-

Figure X (b). The first modified coupled form sinusoidal oscillator.

We demonstrate the derivation of the oscillator equations for one case only: the first
modified coupled form oscillator. This analysis is adapted from [Gordon/Smith] where
the derivation of the coupled form and the second modified coupled form is shown.

yq[n+1] = yq[n] - ε y[n]

y[n+1] = ε yq[n] + y[n]{
These state equations describe the ZIR of the circuit in Figure X (b). From them we read
off the matrix,

G = (1 -ε
ε 1)

If we define the vector

yn = (yq[n]

 y[n])
then we may write yn+1 = G yn�. This State-Variable description has the solution,

 yn = Gn yo

for all time n > 0, where Gn
 is called the state transition matrix, and where yo is the

vector of initial states; i.e., yn at n=0.

234

If we can find the eigenvectors and eigenvalues of G, then we may write equivalently

yn = T Λn T-1 yo

where T holds the conjugate eigenvectors (given by Mathematica) in its columns, and

Λ holds the corresponding eigenvalues along its diagonal. Specifically,

λ 0

0 λ∗Λ = (1 + j ε 0
0 1 - j ε) ()=∆

T-1 = (-j 1
 j 1)1

2

T = (j -j
1 1)

By constructing the diagonal matrix Λ, the exponentiation no longer requires matrix
multiplication. Hence it is easier to acquire a solution analytically for large n.

The eigenvalues are the poles of the system under study. λ* denotes the conjugate
eigenvalue. If we define each eigenvalue in polar form

λ = |λ| e jω∆

then we can make the identifications from Λ

1 = |λ| cos(ω)

ε = |λ| sin(ω)
=>

From these we conclude

ε = sin(ω)/cos(ω)

|λ| = 1/cos(ω) ;ω < π/2
. ..

where the actual oscillator coefficient ε is expressed in terms of the desired frequency of
oscillation, ω. It follows that

cosn(ω)

T Λn T-1 = 1 (sin(n ω) cos(n ω)
cos(n ω) -sin(n ω))

235

Appendix XI
ESP2 Program for Linear Interpolation
Ref.: Interpolation Applications

! Linear interpolation of delayline: JonD, ESP2, 11/19/94.

! VoiceL[2048] (signed, 24-bit q0, left justified) is the delayline we will tap.
! The tap point will undergo modulation.

! chorus_width (unsigned GPR, q0) is the peak excursion (in samples) of the delayline
! modulation about the tap point, nominal_delay.

! nominal_delay (unsigned AOR, q0) is the nominal whole sample delay into the delayline;
! i.e., the center tap point.

! yqn (signed GPR, q23 (all fractional)) is the full-scale oscillator modulator output.

PROGRAM Linear

DEFCONST
 CLK = 40.e6
 Fs = 44100.
 Freq = 1.0 ! Hz

 Pi = 4.0*ATAN(1.0)
 EPSILON = 2.0*SIN((Pi*Freq)/Fs)
 CHORUS_WIDTH = 350 ! CHORUS_WIDTH < NOMINAL_DELAY.

 NOMINAL_DELAY = 400 ! In samples. Altered to suit application.

PROGSIZE <= INT(CLK/(4.*Fs)) ! assuming one big loop

DEFREGION V
 VoiceL[2048]
 minus_one = SIZEM1V !AOR declaration = BASE modulo decrement

 nominal_delay = &VoiceL[NOMINAL_DELAY]
 m_aor !see Style section

DEFSPR
 PC = LinInterp
 REPT_CNT = 0
 SER_CONF = $007fff
 HARD_CONF = $008400

DEFGPR
 GLOBAL
 chorus_width = CHORUS_WIDTH
 epsilon = EPSILON
 LOCAL
 yqn = 0

 yn = -COS((Pi*Freq)/Fs)
 frac=0 frac_u=0 xL vibrato=0

236

CODE
!**
LinInterp: NOP !executes prior to suspension. Want no SER access here.

!************** serial I/O *************
MOV SER0L > xL MOV vibrato > SER7L !coming out of suspension

!********************** feed delayline input ************************
MOV xL > VoiceL[0]

!********************* Linear interpolation ***************************
MOV nominal_delay > MACP
MACP + yqn X chorus_width > &VoiceL[�] !address, integer part

 frac X *&VoiceL[(+)] > MAC LSH MACRL >>1 > frac !fractional part (positive)

MAC + frac_u X *&VoiceL[�] > vibrato DIFF frac > frac_u
!**

!****** hyperstable near-quadrature oscillator (second modified coupled form) ******
NOP MOV yqn > MACP

NOP MOV yn > MACP
MACP - epsilon X yn > yqn

MACP + epsilon X yqn > yn

!***************** sample sync/delayline memory shift *******************************
NOP JMP LinInterp
NOP BIOZ UPDATE BASEV += minus_one
!**************************** end program *************************************

237

Discussion of the Linear Interpolator
As written, the effect of this program is to produce Vibrato. For other effects, such as
Chorus or Flanging, slight modifications are made as discussed in the Applications.

This prototypical usage of the JMP, BIOZ, and UPDATE instructions serves as a
paradigm for all sample synchronous programs employing delaylines. The delayline
memory shift via the UPDATE instruction was discussed in the section on
UPDATE�region BASE.

Latency
Code very similar to this Application was previously discussed in the section on
Computed Addresses. There a partial AGEN listing was shown, illustrating the various
latencies. The AGEN listing for this Application appears later on.

It is strongly recommended to place all SER data SPR access towards the beginning of a
program in case a particular program main loop exceeds the sample period. The time
margin allowed for a program main loop to momentarily exceed the sample period is a
design feature of the BIOZ instruction; in that case there will be no BIOZ suspension on
that loop. (BIOZ is a sample-rate synchronization instruction discussed at length in the Chip Spec.)

The BIOZ instruction178 has an instruction cycle execution latency of 1. So, the first line
of our Linear interpolation program is executed prior to suspension, if suspension is
warranted.179 BIOZ is always executed before the JMP actually takes place because JMP
is also one of the latent instructions. The SER data SPR transfers are latched by a transit
high of the serial interface pin signal called LRCLK. That signal is likely tied to the IOZ
input pin. The IOZ pin transit high will usually take the program out of suspension. It is
for this reason that we do not place any SER data access such as

MOV SER0L > xL
on the next queued program line following the BIOZ instruction (the first line of our

program), for then we would not access the most recent sample.

The first line of code appears to be wasted in our Application program. This is only
because of the need to simplify the presentation. It is not too difficult to find something
for the first program line to do which is not involved with incoming or outgoing SER
audio-sample data.180

In the portion of the code commented, !*** Linear interpolation ***, the fractions (frac and
frac_u�=�1�-�frac) and the address offset (&VoiceL[�]) are all computed too late to be
used in the current sample period. As long as they are all applied in the same sample
period, the computations will be valid, but latent.

178Any concern regarding BIOZ as the last instruction in this program is allayed by the preceding
JMP.
179If this program executes in an amount of time that is less than the sample period (the period of
LRCLK), then there will be suspension due to BIOZ.
180The right channel SER0R is conspicuously missing from our program; there is no reason for
this.

238

Style
Instead of the C-like notation, &VoiceL[�], another programmer may have chosen to
explicitly declare an AOR called m_aor in region V. This may be easier to
conceptualize in some cases. The interpolation code segment above would then have
appeared as follows:

!********************* Linear interpolation ******************************
MOV nominal_delay > MACP
MACP + yqn X chorus_width > m_aor !address, integer part

 frac X *m_aor(+) > MAC LSH MACRL >>1 > frac !fractional part (positive)

MAC + frac_u X *m_aor > vibrato DIFF frac > frac_u
!***

239

Listing (.lst) of ESP2 Linear Interpolation Program

ESP2 Assembler Version 0.40 [29 November 1994]

Program listing: 01/14/95 18:10:58

linear.e2: source lines: 75 microinstructions: 13

no errors, 1 warning

 1 ! Linear interpolation of delayline: JonD, ESP2, 11/19/94.

 2

 3 ! VoiceL[2048] (signed, 24-bit q0, left justified) is the delayline we will tap.

 4 ! The tap point will undergo modulation.

 5

 6 ! chorus_width (unsigned GPR, q0) is the peak excursion (in samples) of the delayline

 7 ! modulation about the tap point, nominal_delay.

 8

 9 ! nominal_delay (unsigned AOR, q0) is the nominal whole sample delay into the delayline;

 10 ! i.e., the center tap point.

 11

 12 ! yqn (signed GPR, q23 (all fractional)) is the full-scale oscillator modulator output.

 13

 14 PROGRAM Linear

 15

 16 DEFCONST

 17 CLK = 40.e6

 18 Fs = 44100.

 19 Freq = 1.0 ! Hz

 20 Pi = 4.0*ATAN(1.0)

 21 EPSILON = 2.0*SIN((Pi*Freq)/Fs)

 22 CHORUS_WIDTH = 350 ! CHORUS_WIDTH < NOMINAL_DELAY.

 23 NOMINAL_DELAY = 400 ! In samples. Altered to suit application.

 24

 25 PROGSIZE <= INT(CLK/(4.*Fs)) ! assuming one big loop

 26

 27 DEFREGION V

 28 VoiceL[2048]

 29 minus_one = SIZEM1V !AOR declaration = BASE modulo decrement

 30 nominal_delay = &VoiceL[NOMINAL_DELAY]

*** linear.e2 31: warning: ’m_aor’: never used

 31 m_aor !see Style section

 32

240

 33 DEFSPR

 34 PC = LinInterp

 35 REPT_CNT = 0

 36 SER_CONF = $007fff

 37 HARD_CONF = $008400

 38

 39 DEFGPR

 40 GLOBAL

 41 chorus_width = CHORUS_WIDTH

 42 epsilon = EPSILON

 43 LOCAL

 44 yqn = 0

 45 yn = -COS((Pi*Freq)/Fs)

 46 frac=0 frac_u=0 xL vibrato=0

 47

 48

 49 CODE

 50 !**

000 51 LinInterp: NOP !executes prior to suspension. Want no SER access here.

 52

 53 !************** serial I/O *************

001 54 MOV SER0L > xL MOV vibrato > SER7L !coming out of suspension

 55

 56 !********************** feed delayline input **************************

002 57 MOV xL > VoiceL[0]

 58

 59 !********************* Linear interpolation ***************************

003 60 MOV nominal_delay > MACP

004 61 MACP + yqn X chorus_width > &VoiceL[�] !addr,int part

005 62 frac X *&VoiceL[(+)] > MAC LSH MACRL >>1 > frac !fractional part

006 63 MAC + frac_u X *&VoiceL[�] > vibrato DIFF frac > frac_u

 64 !**

 65

 66 !****** hyperstable near-quadrature oscillator (second modified coupled form) ******

007 67 NOP MOV yqn > MACP

008 68 NOP MOV yn > MACP

009 69 MACP - epsilon X yn > yqn

00a 70 MACP + epsilon X yqn > yn

 71

 72 !***************** sample sync/delayline memory shift ******************************

00b 73 NOP JMP LinInterp

00c 74 NOP BIOZ UPDATE BASEV += minus_one

 75 !**************************** end program ***************************************

241

 .--- D: MAC D-OPERAND

 | .--- E: MAC E-OPERAND

 | | .--- F: MAC F-OPERAND

 | | | .------------------------------------- OP: MAC OPCODE

 | | | | .---------------------------------- S: MAC SHIFT

 | | | | | .-------------------------------- s: MAC SKIP BIT

 | | | | | | .----------------------------- A: ALU A-OPERAND

 | | | | | | | .------------------------- B: ALU B-OPERAND

 | | | | | | | | .--------------------- C: ALU C-OPERAND

 | | | | | | | | | .----------------- OP: ALU OPCODE

 | | | | | | | | | | .-------------- s: ALU SKIP BIT

 | | | | | | | | | | | .----------- G: AGEN G-OPERAND

 | | | | | | | | | | | | .-------- OP: AGEN OPCODE

 | | | | | | | | | | | | | .----- R: AGEN REGION

 | | | | | | | | | | | | | | .--- L: AGEN DATA LATCH

 | | | | | | | | | | | | | | | .- s: AGEN SKIP BIT

 | | | | | | | | | | | | | | | |

 D E F OP S s A B C OP s G OP R L s

000 51 1d4 1cc 3ff 02 6 0 3ff 3f1 3f1 0b 0 200 6 0 0 0

001 54 3ef 1cb 0f9 03 7 0 3ff 0f8 3e1 0b 0 200 6 0 0 0

002 57 0f9 1cb 1ef 03 7 0 3ff 3f1 3f1 0b 0 2fc 1 7 0 0

003 60 2fe 1cb 1d2 03 7 0 3ff 3f1 3f1 0b 0 2fb 4 7 0 0

004 61 0fd 0ff 2fb 06 7 0 3ff 3f1 3f1 0b 0 2fb 0 7 0 0

005 62 0fb 1ff 3ff 00 7 0 0f7 1d4 0fb 10 0 200 6 0 0 0

006 63 0fa 1ff 0f8 0a 7 0 0f6 0fb 0fa 1a 0 200 6 0 0 0

007 67 1d4 1cc 3ff 02 6 0 3ff 0fd 1d2 0b 0 200 6 0 0 0

008 68 1d4 1cc 3ff 02 6 0 3ff 0fc 1d2 0b 0 200 6 0 0 0

009 69 0fe 0fc 0fd 07 7 0 3ff 3f1 3f1 0b 0 200 6 0 0 0

00a 70 0fe 0fd 0fc 06 7 0 3ff 3f1 3f1 0b 0 200 6 0 0 0

00b 73 1d4 1cc 3ff 02 6 0 000 000 3ff 1c 0 200 6 0 0 0

00c 74 1d4 1cc 3ff 02 6 0 3ff 3f1 3f1 19 0 2ff 7 7 0 0

Integer Constants Value (Hex) Scope

CHORUS_WIDTH. 350 $0000015e local

NOMINAL_DELAY 400 $00000190 local

Real Constants Value Scope

CLK 40000000 local

EPSILON 0.000142475857 local

Freq. 1 local

Fs. 44100 local

Pi. 3.14159265359 local

242

GPRs Address Contents (Base 10) Scope

chorus_width. $0ff $00015e 350 global

epsilon $0fe $0004ab 1195 global

yqn $0fd $000000 0 local

yn. $0fc $800000 -8388608 local

frac. $0fb $000000 0 local

frac_u. $0fa $000000 0 local

xL. $0f9 *** *** local

vibrato $0f8 $000000 0 local

Constant GPRs Address Contents (Base 10) Expression

ALU $005, line 62 $0f7 $ffffff -1 (???)

ALU $006, line 63 $0f6 $7fffff 8388607 (???)

External Memory Arrays Root Absolute Size Region Scope ID

VoiceL. $000000 $000000 2049 V local ***

AORs Address Contents (Base 10) Region Scope

minus_one $2ff $000800 2048 V local

nominal_delay $2fe $000190 400 V local

m_aor $2fd *** *** V local

Preset AORs Address Contents (Base 10) Region Reference

MAC $002, line 57 $2fc $000000 0 V VoiceL[0]

MAC $004, line 61 $2fb *** *** V VoiceL[�]

SPRs Address Contents (Base 10) Scope

ZERO. $3ff *** *** local

HARD_CONF $3f3 $008400 33792 local

SER_CONF. $3f2 $007fff 32767 local

REF $3f1 *** *** local

SER0L $3ef *** *** local

SER7L $3e1 *** *** local

BASEV $3ca $000000 0 local

SIZEM1V $3c9 $000800 2048 local

ENDV. $3c8 $000800 2048 local

DIL0. $1ff *** *** local

DOL0. $1ef *** *** local

PC. $1dd $000000 0 local

REPT_CNT. $1d6 $000000 0 local

MACRL $1d4 *** *** local

MACP_HC $1d2 *** *** local

ONE $1cc *** *** local

MINUS1. $1cb *** *** local

243

Labels Value (Base 10)

LinInterp $000 0

GPR Memory Map

 0/8 1/9 2/a 3/b 4/c 5/d 6/e 7/f

000

008

.

.

.

078

 0/8 1/9 2/a 3/b 4/c 5/d 6/e 7/f

080

.

.

.

0f0 7fffff,c ffffff,c

0f8 000000,l ******,l 000000,l 000000,l 800000,l 000000,l 0004ab,g 00015e,g

AOR Memory Map

 0/8 1/9 2/a 3/b 4/c 5/d 6/e 7/f

200

208

.

.

.

278

 0/8 1/9 2/a 3/b 4/c 5/d 6/e 7/f

280

288

.

.

.

2f8 000000,c 000000,c ******,l 000190,l 000800,l

244

Summary:

Declared Regions Base Size Available

V $000000 2049 0

Total GPRs. 10 (9 initialized)

Total AORs. 5 (4 initialized)

External Memory Used. . . 2049 words

Instructions Available. . 213

source lines: 75 microinstructions: 13

no errors, 1 warning

245

AGEN Listing (.agn) of ESP2 Linear Interpolation Program

! ESP2 Assembler Version 0.40 [29 November 1994]

! AGEN listing: 01/14/95 18:10:59

! linear.e2: source lines: 75 microinstructions: 13

! no errors, 1 warning

! Linear interpolation of delayline: JonD, ESP2, 11/19/94.

! VoiceL[2048] (signed, 24-bit q0, left justified) is the delayline we will tap.

! The tap point will undergo modulation.

! chorus_width (unsigned GPR, q0) is the peak excursion (in samples) of the delayline

! modulation about the tap point, nominal_delay.

! nominal_delay (unsigned AOR, q0) is the nominal whole sample delay into the delayline;

! i.e., the center tap point.

! yqn (signed GPR, q23 (all fractional)) is the full-scale oscillator modulator output.

PROGRAM Linear

DEFCONST

 CLK = 40.e6

 Fs = 44100.

 Freq = 1.0 ! Hz

 Pi = 4.0*ATAN(1.0)

 EPSILON = 2.0*SIN((Pi*Freq)/Fs)

 CHORUS_WIDTH = 350 ! CHORUS_WIDTH < NOMINAL_DELAY.

 NOMINAL_DELAY = 400 ! In samples. Altered to suit application.

PROGSIZE <= INT(CLK/(4.*Fs)) ! assuming one big loop

DEFREGION V

 VoiceL[2048]

 minus_one = SIZEM1V !AOR declaration = BASE modulo decrement

 nominal_delay = &VoiceL[NOMINAL_DELAY]

 m_aor !see Style section

DEFSPR

 PC = LinInterp

 REPT_CNT = 0

 SER_CONF = $007fff

 HARD_CONF = $008400

246

DEFGPR

 GLOBAL

 chorus_width = CHORUS_WIDTH

 epsilon = EPSILON

 LOCAL

 yqn = 0

 yn = -COS((Pi*Freq)/Fs)

 frac=0 frac_u=0 xL vibrato=0

CODE

!**

LinInterp:

NOP

!************** serial I/O *************

MOV SER0L > xL MOV vibrato > SER7L

!********************** feed delayline input **************************

MOV xL > DOL0 NOP WR DOL0 > VoiceL[0]V

!********************* Linear interpolation ***************************

MOV nominal_delay > MACP NOP RD VoiceL[(+)]V > DIL0

MACP + yqn X chorus_width > &VoiceL[�] NOP RD VoiceL[�]V > DIL0

frac X DIL0 > MAC LSH MACRL >> 1 > frac

MAC + frac_u X DIL0 > vibrato DIFF frac > frac_u

!**

!****** hyperstable near-quadrature oscillator (second modified coupled form) ******

NOP MOV yqn > MACP

NOP MOV yn > MACP

MACP - epsilon X yn > yqn

MACP + epsilon X yqn > yn

!***************** sample sync/delayline memory shift ******************************

NOP JMP LinInterp

NOP BIOZ UPDATE BASEV += minus_one

!**************************** end program ***************************************

247

