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Abstract: This chapter discusses reverberation algorithms, with emphasis on algo-
rithms that can be implemented for realtime performance. The chapter begins with a
concise framework describing the physics and perception of reverberation. This includes
a discussion of geometrical, modal, and statistical models for reverberation, the perceptual
effects of reverberation, and subjective and objective measures of reverberation. Algo-
rithms for simulating early reverberation are discussed first, followed by a discussion of
algorithms that simulate late, diffuse reverberation. This latter material is presented in
chronological order, starting with reverberators based on comb and allpass filters, then
discussing allpass feedback loops, and proceeding to recent designs based on inserting
absorptive losses into a lossless prototype implemented using feedback delay networks
or digital waveguide networks.

3.1 INTRODUCTION

Our lives are for the most part spent in reverberant environments. Whether we are
enjoying a musical performance in a concert hall, speaking to colleagues in the office,
walking outdoors on acity street, or even in the woods, the sounds we hear are invariably
accompanied by delayed reflections from many different directions. Rather than
causing confusion, these reflections often go unnoticed, because our auditory system
is well equipped to deal with them. If the reflections occur soon after the initial sound,
the result is not perceived as separate sound events. Instead, the reflections modify
the perception of the sound, changing the loudness, timbre, and most importantly,
the spatial characteristics of the sound. Late reflections, common in very reverberant
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environments such as concert halls and cathedrals, often form a background ambience
which is quite distinct from the foreground sound.

Interestingly, the presence of reverberation is clearly preferred for most sounds,
particularly music. Music without reverberation sounds dry and lifeless. On the other
hand, too much reverberation, or the wrong kind of reverberation, can cause a fine
musical performance to sound muddy and unintelligible. Between these extremes is
a beautiful reverberation appropriate for the music at hand, which adds fullness and
a sense of space. Consequently, a number of concert halls have built reputations for
having fine acoustics, based on the quality of the perceived reverberation.

The importance of reverberation in recorded music has resulted in the the creation
of artificial reverberators, electro-acoustic devices that simulate the reverberation of
rooms. Early devices used springs or steel plates equipped with transducers. The
advent of digital electronics has replaced these devices with the modern digital rever-
berator, which simulates reverberation using a linear discrete-time filter. These devices
are ubiquitous in the audio production industry. Almost every bit of audio that we hear
from recordings, radio, television, and movies has had artificial reverberation added.
Artificial reverberation has recently found another application in the field of virtual
environments, where simulating room acoustics is critical for producing a convincing
immersive experience.

The subject of this paper is the study of signal processing algorithms that simulate
natural room reverberation. The emphasis will be on efficient algorithms that can be
implemented for real-time performance.

3.1.1 Reverberation as a linear filter

From a signal processing standpoint, it is convenient to think of a room containing
sound sources and listeners as a system with inputs and outputs, where the input and
output signal amplitudes correspond to acoustic variables at points in the room. For
example, consider a system with one input associated with a spherical sound source,
and two outputs associated with the acoustical pressures at the eardrums of a listener.
To the extent that the room can be considered a linear, time-invariant (LTT) system?,
a stereo transfer function completely describes the transformation of sound pressure
from the source to the ears of a listener. We can therefore simulate the effect of the
room by convolving an input signal with the binaural impulse response (BIR):

yL(t) = /0°° hL(T)x(t - 7)dr 3.1

yR(t) = /0 ” ha(r)s(t — 7)dr

where hz(t) and hr(t) are the system impulse responses for the left and right ear,
respectively; z(t) is the source sound; and yy,(¢) and yg(t) are the resulting signals
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for the left and right ear, respectively. This concept is easily generalized to the case of
multiple sources and multiple listeners.

3.1.2 Approaches to reverberation algorithms

We will speak of a reverberation algorithm, or more simply, a reverberator, as a linear
discrete-time system that simulates the input-output behavior of a real or imagined
room. The problem of designing a reverberator can be approached from a physical o1
perceptual point of view.

The physical approach. The physical approach seeks to simulate exactly the prop-
agation of sound from the source to the listener for a given room. The preceding
discussion of binaural impulse responses suggests an obvious way to do this, by sim-
ply measuring the binaural impulse response of an existing room, and then rendering
the reverberation by convolution.

When the room to be simulated doesn’t exist, we can attempt to predict its impulse
response based on purely physical considerations. This requires detailed knowledge of
the geometry of the room, properties of all surfaces in the room, and the positions and
directivities of the sources and receivers. Given this prior information, it is possible to
apply the laws of acoustics regarding wave propagation and interaction with surfaces
to predict how the sound will propagate in the space. This technique has been termed
auralization in the literature and is an active area of research [Kleiner et al., 1993].
Typically, an auralization system first computes the impulse response of the specified
room, for each source-receiver pair. These finite impulse response (FIR) filters are
then used to render the room reverberation. '

The advantage of this approach is that it offers a direct relation between the physical
specification of the room and the resulting reverberation. However, this approach is
computationally expensive and rather inflexible. Compared to other algorithms we
will study, real-time convolution with a large filter response is somewhat expensive,
even using an efficient algorithm. Furthermore, there is no easy way to achieve real-
time parametric control of the perceptual characteristics of the resulting reverberation
without recalculating a large number of FIR filter coefficients.

The perceptual approach. The perceptual approach seeks to reproduce only the
perceptually salient characteristics of reverberation. Let us assume that the space of all
percepts caused by reverberation can be spanned by IV independent dimensions, which
correspond to independently perceivable attributes of reverberation. If each perceptual
attribute can be associated with a physical feature of the impulse response, then we
can attempt to construct a digital filter with N parameters that reproduces exactly
these N attributes. In order to simulate the reverberation from a particular room, we
can measure the room response, estimate the N parameters by analyzing the impulse
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response, and then plug the parameter estimates into our “universal” reverberator.

The reverberator should then produce reverberation that is indistinguishable from the

original, even though the fine details of the impulse responses may differ considerably.
This approach has many potential advantages:

m  The reverberation algorithm can be based on efficient infinite impulse response
(IIR) filters.

w  Thereverberation algorithm will provide real-time control of all the perceptually
relevant parameters. The parameters do not need to be correlated as they often
are in real rooms.

»  Ideally, only one algorithm is required to simulate all reverberation.

»  Existing rooms can be simulated using the analysis/synthesis approach outlined
above.

One disadvantage of this method is that it doesn’t necessarily provide an easy way
to change a physical property of the simulated room.

The perceptually motivated method is essentially the approach that has been taken
in the design of reverberation algorithms, with several caveats. First, there is a great
deal of disagreement as to what the perceivable attributes of reverberation are, and
how to measure these from an impulse response. Second, it is difficult to design
digital filters to reproduce these attributes. Consequently, the emphasis has been to
design reverberators that are perceptually indistinguishable from real rooms, without
necessarily providing the reverberator with a complete set of independent perceptual
controls.

In this paper, we will concentrate on the perceptually motivated method, because
the resulting recursive algorithms are more practical and useful. We first present
a concise physical and perceptual background for our study of reverberation, then
discuss algorithms to simulate early reverberation, and conclude with a discussion of
late reverberation algorithms.

3.2 PHYSICAL AND PERCEPTUAL BACKGROUND

The process of reverberation starts with the production of sound at a location within
a room. The acoustic pressure wave expands radially outward, reaching walls and
other surfaces where energy is both absorbed and reflected. Technically speaking, all
reflected energy is reverberation. Reflection off large, uniform, rigid surfaces produces
a reflection the way a mirror reflects light, but reflection off non-uniform surfaces is a
complicated process, generally leading to a diffusion of the sound in various directions.
The wave propagation continues indefinitely, but for practical purposes we can consider
the propagation to end when the intensity of the wavefront falls below the intensity of
the ambient noise level.
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Assuming a direct path exists between the source and the listener, the listener
will first hear the direct sound, followed by reflections of the sound off nearby sur-
faces, which are called early echoes. After a few hundred milliseconds, the number
of reflected waves becomes very large, and the remainder of the reverberant decay is
characterized by a dense collection of echoes traveling in all directions, whose intensity
is relatively independent of location within the room. This 1s called late reverberation
or diffuse reverberation, because there is equal energy propagating in all directions. In
a perfectly diffuse soundfield, the energy lost due to surface absorption is proportional
to the energy density of the soundfield, and thus diffuse reverberation decays exponen-
tially with time. The time required for the reverberation level to decay to 60 dB below
the initial level is defined as the reverberation time.

32,1 Measurement of reverberation

Measuring reverberation in a room usually consists of measuring an impulse response
for a specific source and receiver. Pistol shots, balloon pops, and spark generators
can be used as impulsive sources. Another possibility is to use an omnidirectional
speaker driven by an electronic signal generator. Typical measurement signals include
clicks, chirps (also known as time delay spectrometry [Heyser, 19671)), and various
pseudo-random noise signals, such as maximum length (ML) sequences [Rife and
Vanderkooy, 1987] and Golay codes [Foster, 1986]. The click (unit impulse) signal
allows a direct measurement of the impulse response, but results in poor signal to noise -
ratio (SNR) because the signal energy is small for a given peak amplitude. The chirp
and noise signals have significantly greater energy for a given peak amplitude, and
allow the impulse response to be measured with improved SNR by deconvolving the
impulse response from the recorded signal. The measurement signals are deliberately
chosen to make the deconvolution easy to perform. '

Figure 3.1 shows the impulse response of a concrete stairwell, plotting pressure as
a function of time. The direct response is visible at the far left, followed by some
early echoes, followed by the exponentially decaying late reverberation. The early
echoes have greater amplitude than the direct response due to the directivities of the
measurement speaker and microphone.

Rooms may contain a large number of sources with different positions and directivity
patterns, each producing an independent signal. The reverberation created in a concert
hall by a symphony orchestra cannot be characterized by a single impulse response.
Fortunately, the statistical properties of late reverberation do not change significantly
as a function of position. Thus, a point to point impulse response does characterize
the late reverberation of the room, although the early echo pattern is dependent on the
positions and directivities of the source and receiver.
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Figure 3.1 Impulse response of reverberant stairwell measured using ML sequences.

The fact that the early and late reverberation have different physical and perceptual
properties permits us to logically split the study of reverberation into early and late
. reverberation.

3.2.2 Early reverberation

Early reverberation is most easily studied by considering a simple geometrical model
of the room. These models depend on the assumption that the dimensions of reflective
surfaces in the room are large compared to the wavelength of the sound. Consequently,
the sound wave may be modeled as a ray that is normal to the surface of the wavefront
and reflects specularly, like light bouncing off a mirror, when the ray encounters a wall
surface. Figure 3.2 shows a wall reflection using the ray model. The source is at point
A, and we are interested in how sound will propagate to a listener at point B.
The reflected ray may also be constructed by considering the mirror image of the
-source as reflected across the plane of the wall. In figure 3.2, the image source thus
constructed is denoted A’. This technique of reflecting sources across wall surfaces is
called the source image method. The method allows a source with reflective boundaries
to be modeled as multiple sources with no boundaries.
The image source A’ is a first order source, corresponding to a sound path with a
single reflection. Higher order sources corresponding to sound paths with multiple
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Figure 3.2 Single wall reflection and corresponding image source A’.

reflections are created by reflecting lower order sources across wall boundaries. Fre-
quently the resulting sources are “invisible” to the listener position, and this condition
must be tested explicitly for each source. When the room is rectangular, as shown in
figure 3.3, the pattern of image sources is regular and trivial to calculate. Calculation
of the image source positions in irregularly-shaped rooms is more difficult, but the
problem has been solved in detail [Borish, 1984]. The number of image sources of
order k is roughly N*, where N is the number of wall surfaces. The source image
method is impractical for studying late reverberation because the number of sources
increases exponentially, and the simplified reflection model becomes inaccurate.

X P X X X X
X X X X X
X | % X X X

Figure 3.3 A regular pattern of image sources occurs in an ideal rectangular room.

In order to calculate the impulse response at the listener’s position, the contributions
from all sources are summed. Each source contributes a delayed impulse (echo),
whose time delay is equal to the distance between the source and the listener divided
by the speed of sound. The echo amplitude is inversely proportional to the distance
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travelled, to account for spherical expansion of the sound, and proportional to the
product of the reflection coefficients of the surfaces encountered. This model ignores
any frequency dependent absorption, which normally occurs during surface reflections
and air propagation. A more accurate model uses linear filters to approximate these
frequency dependent losses [Lehnert and Blauert, 1992], such that the spectrum of
each echo reaching the listener is determined by the product of the transfer functions
involved in the history of that echo:

Aw) = G(w) [] Ts(w) (32

jes

where A(w) is the spectrum of the echo, S is the set of walls encountered, T';(w) is
the frequency dependent transfer function that models reflection with the jth wall, and
G(w) models the absorptive losses and time delay due to air propagation.

The simplifying assumptions that permit us to consider only specular reflections are
no longer met when the wall surfaces contain features that are comparable in size to the
wavelength of the sound. In this case, the reflected sound will be scattered in various
directions, a phenomenon referred to as diffusion. The source image model cannot be
easily extended to handle diffusion. Most auralization systems use another geometrical
model, called ray tracing [Krokstad et al., 1968], to model diffuse reflections. A
discussion of these techniques is beyond the scope of this paper.

The early response consists largely of discrete reflections that come from specific
directions, and we now consider how to reproduce the directional information. Itis well
known that the auditory cues for sound localization are embodied in the transformation
of sound pressure by the torso, head, and external ear (pinna) [Blauert, 1983]. A
head-related transfer function (HRTF) is a frequency response that describes this
transformation from a specific free field source position to the eardrum. HRTFs are
usually measured using human subjects or dummy-head microphones, and consist of
response pairs, for the left and right ears, corresponding to a large number of source
positions surrounding the head. When computing the binaural transfer function of a
room using the geometrical models just discussed, we must convolve each directional
echo with the HRTF corresponding to the direction of the echo [Wightman and Kistler,
1989, Begault, 1994].

The binaural directional cues captured by HRTFs are primarily the interaural time
difference (ITD) and interaural intensity difference (IID) which vary as a function of
frequency. Echoes that arrive from lateral directions (i.e. from either side of the lis-
tener) are important for modifying the spatial character of the perceived reverberation.
The ITD of a lateral sound source is well modeled by a delay corresponding to the
difference in path lengths between the two ears. Similarly, the IID may be modeled as
a lowpass filtering of the signal arriving at the opposite (contralateral) ear.
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Figure 3.15 Mixing matrix M used to form uncorrelated outputs from parallel comb
filters [Schroeder, 1962). A;(z) are allpass filters, and C;(z) are comb filters.
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Figure 3.16 Controlling IACC in binaural reverberation [Martin et al., 1993, Jot, 1992b].

3.4.5 Moorer’s reverberator

Schroeder’s original reverberator sounds quite good, particularly for shortreverberation
times and moderate reverberation levels. For longer reverberation times or higher
levels, some sonic deficiencies become noticeable and these have been described by
various authors [Moorer, 1979, Griesinger, 1989, Jot and Chaigne, 1991]:

®  The initial response sounds too discrete, leading to a grainy sound quality,
particularly for impulsive input sounds, such as a snare drum.

= The amplitude of the late response, rather than decaying smoothly, can exhibit
unnatural modulation, often described as a fluttering or beating sound.

®  Lorlongerreverberation times, the reverberation sounds tonally colored, usually
referred to as a metallic timbre,
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m  The echo density is insufficient, and doesn’t increase with time.

All reverberation algorithms are susceptible to one or more of these faults, which
usually do not occur in real rooms, certainly not good sounding ones. In addition to
these criticisms, there is the additional problem that Schroeder’s original proposal does
not provide a frequency dependent reverberation time.

Moorer later reconsidered Schroeder’s reverberator and made several improvements
[Moorer, 1979]. The first of these was to increase the number of comb filters from 4 to
6. This was necessary in order to effect longer reverberation times, while maintaining
sufficient frequency and echo density according to equation 3.27. Moorer also inserted
a one-pole lowpass filter into each comb filter feedback loop, as shown in figure 3.17.
The cutoff frequencies of the lowpass filters were based on a physical consideration of
the absorption of sound by air. Adding the lowpass filters caused the reverberation time
1o decrease at higher frequencies and Moorer noted that this made the reverberation
sound more realistic. In addition, several other benefits were observed. The response
to impulsive sounds was greatly improved, owing to the fact that the impulses are
smoothed by the lowpass filtering. This improves the subjective quality of both the
early response and the late response, which suffers Jess from a metallic sound quality
or a fluttery decay.

x[n] . yin]

Figure 3.17 Comb filter with lowpass filter in feedback loop [Moorer, 1979].

Despite these improvements many problems remained. The frequency dependent
reverberation time is the net result of the lowpass filtering, but it is not possible
to specify a function T,(w) which defines the reverberation time as a function of
frequency. Furthermore, the recurring problems of metallic sounding decay and fluttery
Jate response are reduced but not entirely eliminated by this reverberator.

3.4.6 Allpass reverberators

We now study reverberators that are based on a series association of allpass filters®.
Schroeder experimented with reverberators consisting of 5 allpass filters in series,
with delays starting at 100 msec and decreasing roughly by factors of 1/3, and with
.~ gains of about 0.7 [Schroeder, 1962]. Schroeder noted that these reverberators were
indistinguishable from real Tooms in terms of coloration, which may be true with
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stationary input signals, but other authors have found that series allpass filters are
extremely susceptible to tonal coloration, especially with impulsive inputs [Moorer,
1979, Gardner, 1992]. Moorer experimented with series allpass reverberators, and
made the following comments [Moorer, 1979]:

m  The higher the order of the system, the longer it takes for the echo density to
build up to a pleasing level.

®  The smoothness of the decay depends critically on the particular choice of the
delay and gain parameters.

m  The decay exhibits an annoying, metallic ringing sound.

The z transform of a series connection of IV allpass filters is:

N o
H(z) = 1;[1 p— (3.30)
where m; and g; are the delay and gain, respectively, of allpass filter 7. It is possible to
ensure that the pole moduli are all the same, by basing the gains on the delay length as
indicated by equation 3.19. However, this does not solve the problem of the metallic
sounding decay.

Gardner has described reverberators based on a “nested” allpass filter, where the
delay of an allpass filter is replaced by a series connection of a delay and another
allpass filter [Gardner, 1992]. This type of allpass filter is identical to the lattice form
shown in figure 3.18. Several authors have suggested using nested allpass filters for
reverberators [Schroeder, 1962, Gerzon, 1972, Moorer, 19791. The general form of
such a filter is shown in figure 3.19, where the allpass delay is replaced with a system
function A(z), which is allpass. The transfer function of this form is written:

N Al -y
H(z) = 1-9A(z)

The magnitude squared response of H (z) is:

|A(2)* — 2gRe{A(2)} + ¢
1 —2gRe{A(2)} + 9%|A(2)]?

which is verified to be allpass if A(z) is allpass [Gardner, 1992, Jot, 1992b]. This filter
is not realizable unless A(z) can be factored into a delay in series with an allpass filter,
otherwise a closed loop is formed without delay. The advantage of using a nested
allpass structure can be seen in the time domain. Echoes created by the inner allpass
filter are recirculated to itself via the outer feedback path. Thus, the echo density of a
nested allpass filter increases with time, as in real rooms.

(3.31)

|H(2)]? = = 1if |[A(z)] = 1 (3.32)
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Figure 3.19 Generalization of figure 3.18.

A useful property of allpass filters is that no matter how many are nested or cascaded
in series, the response is still allpass. This makes it very easy to verify the stability of
the resulting system, regardless of complexity. Gardner suggested a general structure
for a monophonic reverberator constructed with allpass filters, shown in figure 3.20
[Gardner, 1992]. The input signal flows through a cascade of allpass sections A;(z),
and is then recirculated upon itself through a lowpass filter H1 p(2) and an attenuating
gain g. Gardner noted that when the output of the allpass filters was recirculated to the
input through a sufficient delay, the characteristic metallic sound of the series allpass
was greatly reduced.

Figure 3.20 Reverberator formed by adding absorptive losses to an allpass feedback
loop [Gardner, 1992].
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The output is formed as a linear combination of the outputs of the allpass sections.
The stability of the system is guaranteed, provided the magnitude of the loop gain s less
than 1 for all frequencies (i.e. |gH p(e?)| < 1forallw). The overall transfer function
of this system is in general not allpass, due to phase cancellation between the output
taps and also the presence of the outer feedback loop. As the input signal is diffused
through the allpass filters, each tap outputs a different response shape. Consequently,
it is possible to customize the amplitude envelope of the reverberant decay by adjusting
the coefficients a;. The reverberation time can be adjusted by changing the feedback
gain g. The lowpass filter simulates frequency dependent absorptive losses, and lower
cutoff frequencies generally result in a less metallic sounding, but duller, late response.

Figure 3.21 shows a complete schematic of an allpass feedback loop reverberator
described by Dattorro [Dattorro, 1997], who attributes this style of reverberator to
Griesinger. The circuit is intended to simulate an electro-acoustical plate reverberator,
characterized by arapid buildup of echo density followed by an exponential reverberant
decay. The monophonic input signal passes through several short allpass filters, and
then enters what Dattorro terms the reverberator “tank”, consisting of two systems
like that of figure 3.20 which have been cross-coupled. This is a useful structure for
producing uncorrelated stereo outputs, which are obtained by forming weighted sums
of taps within the tank. The reverberator incorporates a time varying delay element in
each of the cross-coupled systems. The purpose of the time varying delays is to further
decrease tonal coloration by dynamically altering the resonant frequencies.

There are many possible reverberation algorithms that can be constructed by adding
absorptive losses to allpass feedback loops, and these reverberators can sound very
good. However, the design of these reverberators has to date been entirely empirical.
There is no way to specify in advance a particular reverberation time function T (w),
nor is there a deterministic method for choosing the filter parameters to eliminate tonal
coloration.

3.5 FEEDBACK DELAY NETWORKS

Gerzon generalized the notion of unitary multichannel networks, which are
N-dimensional analogues of the allpass filter [Gerzon, 1976]. An N-input, N-output
LTI system is defined to be unitary if it preserves the total energy of all possible input
signals. Similarly, a matrix M is unitary if | Mul| = [|u|| for all vectors u, which is
equivalent to requiring that MTM = MM? = I, where I is the identity matrix. It is
trivial to show that the product of two unitary matrices is also unitary, and consequently
the series cascade of two unitary systems is a unitary system. Simple unitary systems
we have encountered include a set of N delay lines, and a set of N allpass filters.
It is also easy to show that an N-channel unitary system and an M -channel unitary
system can be combined to form an (N + M) channel unitary system by diagonally
juxtaposing their system matrices. Gerzon showed thata feedback modification can be
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Figure 3.21 Dattorro’s plate reverberator pased on an allpass feedback loop, in-
tended for 29.8 kHz sampling rate [Dattorro, 1997). Hi(z) and Ha(z) are low-
pass filters described in figure 3.11; H;(z) controls the pandwidth of signals enter-
ing the reverberator, and Hy(z) controls the frequency dependent decay. Stereo
outputs yr and ygr are formed from taps taken from labelled delays as follows:
y, = a[266] + al2974] - b[1913] + c[1996] — d[1990] — e[187] — f11066],yr =
d[353] + d[3627] — €[1228] + £[2673] — a[2111] — b[335] — c[121]. In practice, the
input is also mixed with each output to achieve a desired reverberation level. The time
varying functions u(t) and o(t) are low frequency (= 1 Hz) sinusoids that span 16
samples peak to peak. Typical coefficients values are g1 = 0.75,g2 = 0.625,93 =
0.7,94 = 0.5,95 = 0.9.
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made to a unitary system without destroying the unitary property [Gerzon, 1976], in a
form completely analogous to the feedback around the delay in an allpass filter. Gerzon
applied these principles to the design of multichannel reverberators, and suggested the
basic feedback topologies found in later worki[Gerzon, 1971, Gerzon, 1972].

Stautner and Puckette proposed a four channel reverberator consisting of four delay
lines with a feedback matrix [Stautner and Puckette, 1982], shown in figure 3.22.
The feedback matrix allows the output of each delay to be recirculated to each delay
input, with the matrix coefficients controlling the weights of these feedback paths. The
structure can be seen as a generalization of Schroeder’s parallel comb filter, which
would arise using a diagonal feedback matrix. This structure is capable of much
higher echo densities than the parallel comb filter, given a sufficient number of non-
zero feedback coefficients and incommensurate delay lengths. The delays were chosen
in accordance with Schroeder’s suggestions.

a1y 312 43 814
91 822 823 A4
3y 837 d33 83y

a1 Ay 43 B4
F y N N A
Wi |
e, [-m7] >
94 [ 2m2] >
X Yy
Y I |
> 1273 >
Y
L Zm4 4:\_ ]

Figure 3.22 Stautner and Puckette’s four channel feedback delay network [Stautner
and Puckette, 1982].

Stautner and Puckette make a number of important points regarding this system:

®  Stability is guaranteed if the feedback matrix A is chosen to be the product ofa
unitary matrix and a gain coefficient g, where |g| < 1. They suggest the matrix:

01 1 0
1 {-10 0 -1

A—gﬁ 10 0 -1 (3.33)
01 -1 0

where g controls the reverberation time. If |g| = 1, A is unitary.
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s The outputs will be mutually incoherent, and thus can be used in a four channel
loudspeaker system to render a diffuse soundfield.

m  Absorptive losses can be simulated by placing alowpass filter in series with each
delay line.

s The early reverberant response can be customized by injecting the input signal
appropriately into the interior of the delay lines.

The authors note that fluttering and tonal coloration is present in the late decay of
this reverberator. They attribute the fluttering to the beating of adjacent modes, and
suggest that the beat period be made greater than the reverberation time by suitably
reducing the mean spacing of modes according to equation 3.25. To reduce the tonal
coloration, they suggest randomly varying the lengths of the delays.

3.5.1 Jot’s reverberator

We now discuss the recent and important work by Jot, who has proposed a reverberator
structure with two important properties [Jot, 1992b]:

s A reverberator can be designed with arbitrary time and frequency density while
simultaneously guaranteeing absence of tonal coloration in the late decay.

m  The resulting reverberator can be specified in terms of the desired reverberation
time Tr(w) and frequency response envelope G(w).

This is accomplished by starting with an energy conserving system whose impulse
response is perceptually equivalent to stationary white noise. Jot calls this a reference
filter, but we will also use the term lossless prototype. Jot chooses lossless prototypes
from the class of unitary feedback systems. In order to effect a frequency dependent
reverberation time, absorptive filters are associated with each delay in the system. This
is done in a way that eliminates coloration in the late response, by guaranteeing the
local uniformity of pole modulus.

Jot generalizes the notion of a monophonic reverberator using the feedback delay
network (FDN) structure shown in figure 3.23. The structure is a completely general
specification of a linear system containing [N delays.

Using vector notation and the z transform, the equations for the output of the system
y(z) and the delay lines s;(z) are [Jot and Chaigne, 19911

y(z) = cTs(z) + dz(2) (3.34)
s(z) = D(z)[As(2) + bz (z)] (3.35)

where:
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Figure 3.23 Feedback delay network as a general specification of a reverberator con-
taining N delays [Jot and Chaigne, 1991]
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The FDN can be extended to multiple inputs and outputs by replacing the vec-
tors b and ¢ with appropriate matrices. The system transfer function is obtained by
eliminating s(z) from the preceding equations [Jot and Chaigne, 1991}:

H(z) = vz) _ I'DGE™Y) ~Al b +d (3.38)
z(2)
The system zeros are given by [Rocchesso and Smith, 1994]:
b T
det[A — —fl— ~D(z"1)] =0 (3.39)

The system poles are given by those values of z that nullify the denominator of
equation 3.38, in other words the solutions to the characteristic equation:
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det[A - D(z71)] =0 (3.40)

Assuming A is a real matrix, the solutions to the characteristic equation 3.40 will
either be real or complex-conjugate pole pairs. Equation 3.40 is not easy to solve in
the general case, but for specific choices of A the solution is straightforward. For
instance, when A is diagonal, the system represents Schroeder’s parallel comb filter,
and the poles are given by equation 3.21. More generally, when A is triangular, the
matrix A — D(z™1) is also triangular; and because the determinant of a triangular
matrix is the product of the diagonal entries, equation 3.40 reduces to:

N
[I(as—=m) =0 (3.41)

i=1

This is verified to be identical to equation 3.21. Any series combination of elementary
filters — for instance, a series allpass filter — can be expressed as a feedback delay
network with a triangular feedback matrix [Jot and Chaigne, 1991].

3.5.2 Unitary feedback loops

Another situation that interests us occurs when the feedback matrix A is chosen to
be unitary, as suggested by Stautner and Puckette. Because the set of delay lines is
also a unitary system, a unitary feedback loop is formed by the cascade of the two
unitary systems. A general form of this situation is shown in figure 3.24, where Uy (2)
corresponds to the delay matrix, and U, () corresponds to the feedback matrix.

Ny

Figure 3.24 Unitary feedback joop [Jot, 1992b].

Because a unitary system preserves the energy of input signals, it is intuitively
obvious that a unitary feedback loop will conserve energy. It can be shown that the
system poles of a unitary feedback loop all have unit modulus, and thus the system
response consists of non-decaying eigenmodes [Jot, 1992b].

Another way to demonstrate this is to consider the state variable description for the
FDN shown in figure 3.23. Itis straightforward to show that the resulting state transition
matrix is unitary if and only if the feedback matrix A is unitary [Jot, 1992b, Rocchesso
and Smith, 1997]. Thus, a unitary feedback matrix is sufficient to create a ossless
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FDN prototype. However, we will later see that there are other choices for the feedback
matrix that also yield a lossless system.

3.5.3 Absorptive delays

Jot has demonstrated that unitary feedback loops can be used to create lossless proto-
types whose impulse responses are perceptually indistinguishable from stationary white
noise [Jot and Chaigne, 1991]. Moorer previously noted that convolving source signals
with exponentially decaying Gaussian white noise produces a very natural sounding
reverberation [Moorer, 1979]. Consequently, by introducing absorptive losses into a
suitable lossless prototype, we should obtain a natural sounding reverberator. Jot’s
method for introducing absorptive losses guarantees that the colorless quality of the
lossless prototype is maintained. This is accomplished by associating a gain &; < 1
with each delay 1 in the filter, as shown in figure 3.25.

z My ih

Figure 3.25 Associating an attenuation with a delay.
The logarithm of the the gain is proportional to the length of the delay:

ki = 4™ (3.42)

Provided all the delays are so modified, this has the effect of replacing z with z/7 in
the expression for the system function H (z), regardless of the filter structure. Starting
from a lossless prototype whose poles are all on the unit circle, the above modification
will cause all the poles to have a modulus equal to . Therefore, the lossless prototype
response Afn] will be multiplied by an exponential envelope ¥™ where 7 is the decay
factor per sampling period [Jot and Chaigne, 1991, Jot, 1992b]. By maintaining
the uniformity of pole modulus, we avoid the situation where the response in the
neighborhood of a frequency is dominated by a few poles with relatively large moduli.

The decay envelope is made frequency dependent by specifying frequency de-
pendent losses in terms of the reverberation time T7(w). This is accomplished by
associating with each delay i an absorptive filter h;(z), as shown in figure 3.26. The
filter is chosen such that the logarithm of its magnitude response is proportional to
the delay length and inversely proportional to the reverberation time, as suggested by
equation 3.19 [Jot and Chaigne, 1991}:

-60T s
Te(w)
This expression ignores the phase response of the absorptive filter, which has the effect

201ogyq [hi(e?)| = (3.43)
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o

Figure 3.26 Associating an absorptive filter with a delay.

of slightly modifying the effective length of the delay. In practice, it is not necessary
to take the phase delay into consideration [Jot and Chaigne, 1991]. By replacing each
delay with an absorptive delay as described above, the poles of the prototype filter no
longer appear on a circle centered at the origin, but now lie on a curve specified by the
reverberation time Ty (w).

A consequence of incorporating the absorptive filters into the lossless prototype is
that the frequency response envelope of the reverberator will no longer be flat. For
exponentially decaying reverberation, the frequency response envelope is proportional
to the reverberation time at all frequencies. We can compensate for this effect by
associating a-correction filter t(z) in series with the reference filter, whose squared
magnitude is inversely proportional to the reverberation time [Jot, 1992bl:

[t(e7)] o (3.44)

Tr(w)

After applying the correction filter, the frequency response envelope of the reverberator
will be flat. This effectively decouples the reverberation time control from the overall
gain of the reverberator. The final reverberator structure is shown in figure 3.27.
Any additional equalization of the reverberant response, for instance, to match the
frequency envelope of an existing room, can be effected by another filter in series with
the correction filter.

3.5.4 Waveguide reverberators

Smith has proposed multichannel reverberators based on a digital waveguide network
(DWN) [Smith, 1985]. Each waveguide is a bi-directional delay line, and junctions
between multiple waveguides produce lossless signal scattering. Figure 3.28 shows an
N -branch DWN which is isomorphic to the N-delay FDN shown in figure 3.23 [Smith
and Rocchesso, 1994].

The waves travelling into the junction are associated with the FDN delay line
outputs s;[n]. The length of each waveguide is half the length of the corresponding
FDN delay, because the waveguide signal must make a complete round trip to return
to the scattering junction. An odd-length delay can be accommodated by replacing the
non-inverting reflection with a unit sample delay.
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Figure 3.27 Reverberator constructed by associating a frequency dependent absorp-
tive filter with each delay of a lossless FDN prototype filter [Jot and Chaigne, 1991].

©
s1[n+m,] SN [n+my]
o O~ o
sy{n] sninl
| oy my a
I 2 2 Q

Figure 3.28 Waveguide network consisting of a single scattering junction to which
N waveguides are attached. Each waveguide is terminated by an ideal non-inverting
reflection, indicated by a black dot [Smith and Rocchesso, 1994].
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The usual DWN notation defines the incoming and outgoing pressure variables as
pj‘ = s;[n] and p; = si[n + mi), respectively, and therefore the operation of the

scattering junction can be written in vector notation as

p~ =Ap" (3.45)

where A is interpreted as a scattering matrix associated with the junction.

As we have already discussed, a lossless FDN results when the feedback matrix is
chosen to be unitary. Smith and Rocchesso have shown that the waveguide interpreta-
tion leads to a more general class of lossless scattering matrices [Smith and Rocchesso,
1994]. This is due to the fact that each waveguide may have a different characteristic
admittance. A scattering matrix is lossless if and only if the active complex power is
scattering-invariant, i.e., if and only if

pt'Ipt = p  Ip~
= A'TA =T

where T is a Hermitian, positive-definite matrix which can be interpreted as a
generalized junction admittance. For the waveguide in figure 328, we have I' =
diag(T'1, ..I'n), where I'; is the characteristic admittance of waveguide i. When A is
unitary, we have T’ = I. Thus, unitary feedback matrices correspond to DWNs where
the waveguides all have unit characteristic admittance, or where the signal values are
in units of root power [Smith and Rocchesso, 1994].

Smith and Rocchesso have.shown thata DWN scattering matrix (or a FDN feedback
matrix) is lossless if and only if its eigenvalues have unit modulus and its eigenvec-
tors are linearly independent. Therefore, lossless scattering matrices may be fully
parameterized as

A=T7'DT (3.46)

where D is any unit modulus diagonal matrix, and T is any invertible matrix [Smith and
Rocchesso, 1994]. This yields a larger class of lossless scattering matrices than given
by unitary matrices. However, not all lossless scattering matrices can be interpreted as
a physical junction of N waveguides (e.g., consider a permutation matrix).

3.5.5 Lossless prototype structures

Jot has described many lossless FDN prototypes based on unitary feedback matrices.
A particularly useful unitary feedback matrix Ay, which maximizes echo density
while reducing implementation cost, is taken from the class of Householder matrices
[Jot, 1992b]:
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2
Ay=Jy— YV—uNu}r\, (3.47)

where J v is an N xN permutation matrix, and uy is an Nx1 column vector of 1’s. This
unitary matrix contains only two different values, both nonzero, and thus it achieves
maximum echo density when used in the structure of figure 3.27. Because uy u% isa
matrix containing all 1’s, computation of A yx consists of permuting the elements of
x according to J v, and adding to these the sum of the elements of x times the factor
—2/N. Thisrequires roughly 2V operations as opposed to the N2 operations normally
required. When J is the identity matrix Iy, the resulting system is a modification of

Schroeder’s parallel comb filter which maximizes echo density as shown in figure 3.29.

-2/N
—
A

x[n] X y(n]

Figure 3.29 Modification of Schroeder’s parallel comb filter to- maximize echo density
[Jot, 1992b].

Jot has discovered that this structure produces a periodic parasitic echo with period
equal to the sum of the delay lengths. This is a result of constructive interference
between the output signals of the delays, and can be eliminated by choosing the
coefficients c; in figure 3.27 such that every other channel undergoes a phase inversion
(multiplication by -1) [Jot, 1992b]. Another interesting possibility proposed by Jot is
choosing J v to be a circular permutation matrix. This causes the delay lines to feed
one another in series, which greatly simplifies the memory management in the final
implementation. —

Rocchesso and Smith have suggested using unitary circulant matrices for the feed-
back matrix of a FDN [Rocchesso and Smith, 1994]. Circulant matrices have the
form:
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a[0] all] al2] a[N —1]
a[N -1] a[0] all] -+ alN-2]

A | alN-2 alN-1 af0] - alN - 3) (3.48)
all] al2] a[3] al0]

Multiplication by a circulant matrix implements circular convolution of a column
vector with the first row of the matrix. A circulant matrix A can be factored as
shown in equation 3.46 where T is the discrete Fourier transform (DFT) matrix and
D is a diagonal matrix whose elements are the DFT of the first row of A. The
diagonal elements of D are the eigenvalues of A. A circulant matrix is thus lossless
(and unitary) when its eigenvalues (the spectrum of the first row) have unit modulus.
The advantages of using a circulant matrix are that the el genvalues can be explicitly
specified, and computation of the product can be accomplished in O(N log(IN)) time
using the Fast Fourier transform (FFT).

All of the late reverberator structures weé have studied can be seen as an energy
conserving system with absorptive losses inserted into the structure. When the ab-
sorptive losses are removed, the structure of the lossless prototype is revealed. This
is true for Schroeder’s parallel comb filter when the feedback coefficients are unity,
which corresponds to a FDN feedback matrix equal to the identity matrix. The allpass
feedback loop reverberator in figure 3.20 consists of a unitary feedback loop when
absorptive losses are removed. Stautner and Puckeite’s FDN reverberator is also a
unitary feedback loop when |g| = 1 (see equation 3.33). However, the method shown
for adding the absorptive losses in these reverberators does not necessarily prevent
coloration in the late decay. This can be accomplished by associating an absorptive
filter with each delay in the reverberator according to equation 3.43.

The parameters of the reference structure are the number of delays N, the lengths
of the delays m;, and the feedback matrix coefficients. If a large number of inputs
or ouwputs is desired, this can also affect the choice of the reference structure. The
total length of the delays in seconds, equal to the modal density, should be greater than
the density of frequency maxima for the room to be simulated. Thus, the minimum
total length required is T /4, after equation 3.24. A total delay of 1 t0 2 seconds is
sufficient to produce a reference filter response that is perceptually indistinguishable
from white noise [Jot, 1992b], which gives an upper bound on the total delay required
for infinite reverberation times with broadband input signals. To improve the quality of
the reverberation in response to narrowband input signals, one may wish to use a total
delay at least equal to the maximum reverberation time desired, after equation 3.25.
The number of delays and the lengths of the delays, along with the choice of feed-
back matrix, determines the buildup of echo density. These decisions must be made
empirically by evaluating the quality of the reference filter response.
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3.5.6 Implementation of absorptive and correction filters

Once a lossless prototype has been chosen, the absorptive filters and the correction
filter need to be implemented based on a desired reverberation time curve. Jot has
specified a simple solution using first order IIR filters for the absorptive filters, whose
transfer functions are written [Jot, 1992b]:

1-5i
h; = k,; e .
() =kii5.5 (3.49)
Remarkably, this leads to a correction filter which is first order FIR:
1-p8z"1

1-8

The filter parameters are based on the reverberation time at zero frequency and the
Nyquist frequency, notated 7, (0) and T (), respectively:

t(z) =g (3.50)

2
1+ k(1+1/e)

_ ZT'I: ,8_1-\/2 G_TT‘(W)

I=AN T 00 " T T T T(0)
The derivation of these parameters is detailed in the reference [Jot, 1992b]. The family
of reverberation time curves obtained from first order filters is limited, but leads to

natural sounding reverberation. Jot also describes methods for creating higher order
absorption and correction filters by combining first order sections.

ki =1073/T0) g =1 — (3.51)

3.5.7 Multirate algorithms

Jot’s method of incorporating absorptive filters into a lossless prototype yields a system
whose poles lie on a curve specified by the reverberation time. An alternative method to
obtain the same pole locus is to combine a bank of bandpass filters with a bank of comb
filters, such that each comb filter processes a different frequency range. The feedback
gain of each comb filter then determines the reverberation time for the corresponding
frequency band.

This approach has been extended to a multirate implementation by embedding
the bank of comb filters in the interior of a multirate analysis/synthesis filterbank
[Zoelzer et al., 1990]. A multirate implementation reduces the memory requirements
for the comb filters, and also allows the use of an efficient polyphase analysis/synthesis
filterbank [Vaidyanathan, 1993].
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3.5.8 Time-varying algorithms

There are several reasons why one might want to incorporate time variation into a
reverberation algorithm. One motivation is to reduce coloration and fluttering in the
reverberant response by varying the resonant frequencies. Anotheruse of time variation
is to reduce feedback when the reverberator is coupled to an electro-acoustical sound
reinforcement system, as is the case in reverberation enhancement systems [Griesinger,
1991]. The time variation should always be implemented so as to yield a natural
sounding reverberation free from audible amplitude or frequency modulations. There
are several ways to add time variation to an existing algorithm:

®  Modulate the lengths of the delays, e.g., as shown in figure 3.21.

»  Vary the coefficients of the feedback matrix in the reference filter while main-
taining the energy conserving property, or similarly vary the allpass gains of an
allpass feedback loop reverberator.

= Modulate the output tap gains of an allpass feedback loop structure such as in
figure 3.20, or similarly vary the mixing matrix shown in equation 3.28.

There are many ways to implement variable delay lines [Laakso et al., 1996]. A
simple linear interpolator works well, but for better high frequency performance, it may
be preferable to use a higher order Lagrangian interpolator. Dattorro has suggested
using allpass interpolation, which is particularly suitable because the required modu-
lation rate is low [Dattorro, 1997]. Obviously, modulating the delay length causes the
signal passing through the delay to be frequency modulated. If the depth or rate of the
modulation is too great, the modulation will be audible in the resulting reverberation.
This is particularly easy to hear with solo piano music. The maximum detune should
be restricted to a few cents, and the modulation rate should be on the order of 1 Hz.

The notion of changing the filter coefficients while maintaining an energy conserving
system has been sug gested by Smith [Smith, 1985], who describes the result as placing
the signal in a changing lossless maze. Smith suggests that all coefficient modulation
be done at sub-audio rates to avoid sideband generation, and warns of an “undulating”
sound that can occur with slow modulation that is too deep. '

Although many commercial reverberators use time variation to reduce tonal col-
oration, very little has been published on time-varying techniques. There is no theory
which relates the amount and type of modulation to the reduction of tonal coloration
in the late response, nor is there a way to predict whether the modulation will be
noticeable. Consequently, all the time-varying methods are completely empirical in
nature.
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3.6 CONCLUSIONS

This paper has discussed algorithms for rendering reverberation in real-time. A
straightforward method for simulating room acoustics is to sample a room impulse
response and render the reverberation using convolution. Synthetic impulse responses
can be created using auralization techniques. The availability of efficient, zero delay
convolution algorithms make this a viable method for real-time room simulation. The
drawback of this method is the lack of parameterized control over perceptually salient
characteristics of the reverberation. This can be a problem when we attempt to use
these systems in interactive virtual environments.

Reverberators implemented using recursive filters offer parameterized control due
to the small number of filter coefficients. The problem of designing efficient, natural
sounding reverberation algorithms has always been to avoid unpleasant coloration and
fluttering in the decay. In many ways, Jot’s work has revolutionized the state of the
art, because it is now possible to design colorless reverberators without resorting to
solely empirical design methods. It is possible to specify in advance the reverberation
time curve of the reverberator, permitting an analysis/synthesis method for reverberator
design which concentrates on reproducing the energy decay relief of the target room.
Interestingly, many of the fundamental ideas can be traced back to Schroeder’s original
work, which is now more than thirty years old.

There are still problems to be solved. Reproducing a complicated reverberation
time curve using Jot’s method requires associating a high order filter with each delay
in the lossless prototype, and this is expensive. It is an open question whether the
constraint of uniform pole modulus necessarily requires one absorptive filter per delay
line (Jean-Marc Jot, personal communication, 1994). Many of the commercially
available reverberators probably use time-variation to reduce tonal coloration, yet the
study of time-varying algorithms has received almost no attention in the literature. A
general theory of tonal coloration in reverberation is needed to explain why certain
algorithms sound good and others sound bad.

The study of reverberation has been fertile ground for many acousticians, psychol-
ogists, and electrical engineers. There is no doubt it will continue to be so in the
future.
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Notes

1. Rooms are very linear but they are not time~invariant due to the motion of people and air. For

practical purposes we consider them to be LTI systems.
2. There are many ways (o implement allpass filters

in Figures 3.13 and 3.14.

[Moorer, 1979, Jot, 1992b]; two methods are shown




