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Maximally Diffusive Yet Efficient Feedback
Delay Networks for Artificial Reverberation

Davide Rocchesso,Member, IEEE

Abstract—Feedback delay networks are widely used for simu-
lating the diffuse part of reverberation in a room. We present
particular choices of the feedback coefficients, namely Galois
sequences arranged in a circulant matrix, to produce a maximum
echo density in the time response. These specific sets of coefficients
give implementations having a low number of multipliers, and
the resulting circuit can be efficiently pipelined. The resulting
networks are compared with other efficient implementations.

Index Terms—Acoustic signal processing, reverberation, se-
quences.

I. INTRODUCTION

A RTIFICIAL reverberation has been an active field of
research in audio signal processing for over 30 years

[1]–[11], the purpose being to provide an effective simulation
of the sound field as is given by actual rooms. In particular,
several solutions have been proposed in the past for simulating
the diffuse part of reverberation (“reverb”), i.e., the tail of the
impulse response obtained by cutting the early 60–80 ms.

Most frequently, artificial reverberators are made of combi-
nations of comb and allpass filters [1]–[4]. The main drawback
of these structures is that they are difficult to parameterize be-
cause of the poor relationship between the system parameters
and the physical quantities of a real room.

Another approach to reverberation is by means of wave-
guide filters [6]. With this technique, structures of arbitrary
complexity can be built, and all the parameters can be assigned
to physical quantities. On the other hand, fairly complicated
(and computationally expensive) structures are needed in order
to give a satisfactory approximation of the diffuse sound field
in a room.

A computational structure in between the efficient
comb/allpass networks and the general waveguide networks
is the feedback delay network(FDN) [5], [7], [12], [13].
In this letter, we are proposing a special case of FDN,
having optimal time-domain behavior and a low number
of multipliers, which is based on circulant feedback delay
networks (CFDN) [10], [11].

In Section II, we briefly describe the structure of FDN’s
and CFDN’s. In Section III, a new realization based on
Galois sequences is proposed. In Section IV, we suggest
a possible implementation that exploits the nice properties
of the structure. In Section V, we compare the proposed
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Fig. 1. Reference structure for a feedback delay network.

implementation with two other interesting solutions, namely
the FDN proposed by Jot [14] and the FDN using a Hadamard
feedback matrix.

II. BACKGROUND

An FDN is built using delay lines, each having a length
in seconds given by , where is the
sampling period. The complete FDN (see Fig. 1) is given by
the following relations:

(1)

where , are the delay-line outputs at time
sample . The matrix is called the “feedback ma-
trix.” The formulation of (1) represents a reference structure, in
the sense that, with the appropriate choice of feedback matrix,
it is a lossless structure. In practice, we must insert attenuation
coefficients and filters in the feedback loop [7], [8].

In [10] and [11], CFDN’s were proposed. For these struc-
tures, the feedback matrix is circulant [15], and the computa-
tion of the matrix–vector product in (1) can be performed in

steps by using the fast Fourier transform (FFT)
algorithm. Moreover, the matrix is completely specified by
its first row, which can be found through an inverse FFT
applied to the eigenvalues. It turns out that eigenvalues are
useful for controlling the time–frequency properties of the
reverberator. In [11], a procedure is also given for computing
the delay-line lengths and theand coefficients starting from
geometrical specifications of a room. Namely, the structure can
be interpreted as a scattering object in a perfectly reflecting
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box, where each delay line is associated with the direction of
propagation of sound waves to the object [16].

III. A M AXIMALLY DIFFUSIVE CFDN

In room acoustics, diffusors are gratings to be applied to
the walls and the ceiling in order to improve the smoothness
of reverb and distribute the sound energy uniformly in the
whole enclosure [17]. By means of accurate selection of
surface materials and geometry, it is possible to approximate
a desirable scattering pattern in a certain frequency band [3],
[18], [19]. One of the most desirable patterns turns out to be
flat in all directions, thus corresponding to maximal diffusion.

In the physical interpretation of CFDN’s [16], the feedback
matrix represents the scattering properties of an object in
a perfectly reflecting enclosure. For a maximally diffusive
reverb, we want that any ray that is incident to the object
be scattered in equal proportion along the various directions.
In the time domain, this corresponds to a maximally dense
impulse response. This is a highly desirable property for an
artificial reverb [14], and might be obtained by choosing a
sequence of equal-magnitude numbers for the first row of the
circulant matrix. At the same time, we have to make sure
that the structure remains stable, i.e., the matrix eigenvalues
are within the unit circle [11], and this can be achieved by
using Galois sequences [20] for the first row of the circulant
feedback matrix.

For our purpose,1 Galois sequences are defined as se-
quences of real numbers having magnitude

and such that the discrete Fourier transform is constant
and unit-magnitude, except for the DC component, which has
magnitude . This means that, for the feedback matrix, all
the eigenvalues but one are on the unit circle. To bring the
nonunitary eigenvalue on the unit circle we simply have to

add a constant offset to all the
elements of the feedback matrix. With all the eigenvalues of
the feedback matrix on the unit circle, the matrix is lossless
[11]; hence, the frequency properties are controlled only by
the loop filters and attenuation coefficients, and therefore no
compensation is needed. Fig. 2 shows the impulse response of
a maximally diffusive CFDN having delay lengths in samples

[42, 29, 26, 23, 21, 19, 18, 17, 16, 15, 14, 13, 11,
9, 7] and, for any delay, an attenuation coefficient ,
with .

The fact that all the numbers of a Galois sequence have
the same magnitude means that only multiplications
are needed to perform the matrix–vector multiplication. In the
implementation suggested below, the number of multipliers
can be further reduced to only one.

IV. I MPLEMENTATION

Experiments have shown that matrices of order larger than
eight are needed to give a sufficiently dense, high-quality
reverb. We present a practical implementation for

1Since, for our application, it is crucial to have a unit-magnitude discrete
Fourier transform, i.e., eigenvalues on the unit circle, we do not use the
definition of Galois sequences as sequences of+1 and�1 [20].

Fig. 2. Impulse response of a maximally diffusive CFDN, withN = 15.

. In the case under consideration, a Galois sequence is

(2)
By replacing 1 with 0 and by 1, the sequence (2) can be
obtained dividing by four the solution of the recursion

(3)

where the addition is performed modulo 2 and the initial
conditions are set to
[20]. According to (2), the first element of the matrix–vector
product can be computed by the circuit of Fig. 3. The other
elements are similarly computed. The expression ,
represented by the lower path in Fig. 3, has to be computed
only once for all the elements of the matrix–vector prod-
uct. The computation of , for an arbitrary , can be
performed using the same hardware of Fig. 3, and a shift
register containing the elements of the vector. For the th
element of the output vector, a shift is performed on the shift
register, in order to bring the element mod in
the first position, according to the circulant structure of the
feedback matrix. Therefore, for this case with , for
any output element, 15 two-input adds, one shift (multiply by
1/4), and an inverter, are required. The 15 two-input adds can
be subdivided as follows: six adds for the adderb (Fig. 3),
seven adds for the adderc, and two adds for the addera. This
number of additions corresponds to performing a multi-input
add as a cascade of two-input adds. Whenever possible, an
organization of two-input adders on a binary tree should be
used to exploit parallelism and perform a-input addition in

steps. For example, the upper part of Fig. 3 can be
organized according to Fig. 4. If additions are performed at
the same rate as the shifts in thesequence, a pipeline in the
stages of the addition tree allows to complete the computation
of the output vector every clock cycles, with a delay
of cycles. The total number of adders to
be used in the tree is . The total work for a single
matrix–vector product is given by the product of (adders)
times pipeline stages, i.e., for .
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Fig. 3. First component of the matrix–vector computation for the maximally
diffusive structure, withN = 15.

Fig. 4. Operations for the upper part of Fig. 3, organized in a binary tree.

In addition to the operations listed above, the sum of
numbers and the multiplication by have to be computed
once for the whole collection of outputs. However, our
experience in the simulation of room responses shows that
this computation, represented by the lower part of Fig. 3, can
often be omitted, since the difference in the output sound is not
perceivable in most of the cases. Neglecting the contribution
of the term corresponds to using a lossy matrix,
where the loss is fairly small to be neglected.

We conclude this section by noting that the choice
is particularly attractive since the resulting circuit can be
implemented with no multiplies at all, whenever the lower
part of Fig. 3 is neglected, and the multiplication by 1/4 is
replaced by a right shift.

V. OTHER STRUCTURES

Jot [14, p. 126] proposed a 16 16 unitary feedback
matrix composed of 4 4 unitary blocks, each of them
being the scattering matrix of a four-branches waveguide
junction [9]. Such a matrix is maximally diffusive, since
its values are all equal-magnitude, and it is lossless, since
it is unitary. Moreover, the number of operations is fairly
tractable, being about 4 16. However, such a matrix has
not a circulant structure and, therefore, it does not admit the
simple implementation of Figs. 3 and 4. Actually, we figured
out a possible hard-wired implementation of the matrix–vector
multiplication, using a fat tree having the vector elements at the
leaves, 60 adders at the nodes, and 20 1-b shifters (see Fig. 5).
The height of the tree is five, thus allowing five pipeline stages,
and a total work . A drawback of this solution is the
number of wires for connections, which is significantly larger
than that of Fig. 4.

Fig. 5. Implementation of the matrix–vector multiplication using the 16�
16 matrix proposed by Jot (a tree subset is shown).

Another good choice, suggested by Smith [21] for the
feedback matrix of an FDN, is given by Hadamard matrices
[15], which can be obtained recursively, for dimensions that
are powers of 2, via Kronecker products. The benefits of such
a choice are similar to the previous one, since the matrix
is maximally diffusive and the matrix–vector product can be
implemented recursively with no multiplies in
time steps. It has been shown that, up to high dimensions, the
only Hadamard matrix that is circulant is 4 4, which is not
enough for good reverb. Hence, in general, it is not possible
to arrange the computation as nicely as in Fig. 4.

VI. CONCLUSION

A few feedback matrix structures are available to the
designer of a maximally diffusive feedback delay network. To
summarize, the Jot’s and Hadamard matrices are the structures
of choice within an FDN having order . On the other
hand, choosing , we can take advantage of the CFDN
metaphor [11] and of the simple implementation of Fig. 4.
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