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Abstract

The feedback delay network (FDN) has been proposed for digital reverberation. Also pro-
posed with similar advantages is the digital waveguide network (DWN). This paper notes that
the commonly used FDN with an N ×N orthogonal feedback matrix is isomorphic to a normal-
ized digital waveguide network consisting of one scattering junction and a vector transformer
joining N reflectively terminated branches. Generalizations of FDNs and DWNs are discussed.
The general case of a losslessness FDN feedback matrix is shown to be any matrix having
unit-modulus eigenvalues and linearly independent eigenvectors. A special class of FDNs using
circulant matrices is proposed. These structures can be efficiently implemented and allow con-
trol of the time and frequency behavior. Applications of circulant feedback delay networks in
audio signal processing are discussed.
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1 Introduction

Artificial reverberation is a challenging application in signal processing because it is necessary to
approximate large systems (such as concert halls) having hundreds of thousands of poles and zeros in
the audio band. Instead of pursuing explicit models which are prohibitively complex, it is necessary
to find alternative abstractions which can be implemented at reasonable cost and which capture the
salient psychoacoustical attributes of natural reverberation. An important practical requirement is
a stable numerical implementation of sparse, high-order, nearly lossless linear systems. This paper
addresses this and related issues.

1.1 Prior Work

The field of digital artificial reverberation was launched by M. Schroeder more than thirty years
ago [25]. In his pioneering work, he introduced recursive comb filters and allpass filters as suitable
means for inexpensive simulation of multiple echoes. In particular, he introduced use of allpass
filters of the form y(n) = gx(n)+x(n−N)− gy(n−N), with N any positive integer, for achieving
dense echoes with a flat amplitude response. This structure has since been used extensively in
artificial reverberation [16].

In the seventies, M. A. Gerzon [4] generalized the single-input, single-output Schroeder allpass
to M inputs and outputs by replacing the N -sample delay line with an order M “unitary network”
(a square matrix transfer function having a frequency response matrix which is a unitary matrix
at all frequencies, i.e., it must be a “paraunitary” transfer function matrix [31]).

J. Stautner and M. Puckette [30] introduced what we now call feedback delay networks (FDNs)
as structures well suited for artificial reverberation. These structures are characterized by a set of
delay lines connected in a feedback loop through a “feedback matrix” (see Fig. Fig. 1). The FDN
was obtained as a generalization of the recursive feedback comb filter y(n) = x(n−N)+ gy(n−N)
by (1) replacing the single N -sample delay line by a diagonal matrix of delay lines of different
lengths, and (2) replacing the feedback gain g by the matrix G = UD, where U is any unitary
matrix,1 and D is any diagonal matrix having all elements less than 1 − ε in magnitude, where
ε > 0 determines the stability margin. Specific early reflections were implemented by adding scaled
copies of the source signal into selected points along the delay lines, corresponding to use of the
transposed form of the FIR filter [19]. Early reflections in artificial reverberation were apparently
first implemented by J. A. Moorer using a direct-form FIR filter in series with Schroeder allpass
filters and air-absorption comb filters [16].

More recently, J. M. Jot has extensively studied FDNs and developed associated techniques for
designing good quality reverberators. He suggested the use of efficient special cases of unitary feed-
back matrices as well as techniques for pole-placement to obtain a desired decay-time vs. frequency
[8], and introduced the valuable design principle that, for smoothest (idealized) late reverberation,
all modes in a given frequency band should decay at substantially the same rate in order to avoid
isolated ringing modes in the late reverberation which tend to sound “metallic” [9].

In 1986, digital waveguide networks (DWN) were proposed as a useful starting point for digital
reverberator design [26]. The idea was to build an arbitrary closed network of digital waveguides
exhibiting the desired early reflections and late echo density, and then introduce loss filters into
the network to achieve the desired decay time vs. frequency. Approaching reverberation via lossless

1While papers on this subject speak of unitary feedback matrices U ∈ C
N defined by UHU = I, where UH denotes

the Hermitian transpose of U , all practical applications thus far appear to be confined to orthogonal matrices U ∈ R
N .
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prototypes leads to good numerical and stability properties [27, 31]. Like FDNs, DWNs make it
easy to construct well-behaved, high-order, nearly lossless systems.

1.2 Lossless Reveberator Prototypes

Reverberator design is often factored into separate designs of the early reflections and the late
“diffuse” reverberation. Specific early reflections are easily realized using FIR filter taps. To de-
velop a high quality late reverberation, it is good to begin with a lossless prototype reverberator
so that the structure of its late time response can be clearly heard. Nominally, a lossless prototype
reverberator is judged by the quality of white noise it generates in response to an impulse signal.
For smooth late reverberation, the white noise should sound uniform in every respect. Subsequent
introduction of sparse lowpass filters into the prototype network serves to set the desired reverber-
ation time vs. frequency. In other words, starting with lossless networks allows the decoupling of
reverberation time from structural aspects of the reverberator. Any “passive” arithmetic scheme,
such as magnitude truncation, can be used at certain multiplier outputs to eliminate the possibility
of limit cycles and overflow oscillations [27].

Since FDNs and DWNs appear to present very different approaches for constructing lossless
reverberator prototypes, it is natural to ask what connections may exist between them, and whether
there may be unique advantages of one over the other.

1.3 Summary and Outline

In section II, we briefly review the FDN and discuss some of its algebraic properties. In section III,
we explore connections between FDNs and DWNs: It is shown how a single-junction DWN created
by the intersection of N waveguides can be interpreted as an order N FDN; conversely, it is shown
that any FDN can be interpreted as a DWN, although its scattering junction is not necessarily
physical. We derive general conditions for lossless FDN feedback matrices in which the unitary
matrix normally used in FDNs is extended to any matrix having unit-modulus eigenvalues and
linearly independent eigenvectors. The extension corresponds to a generalization of signal energy
by replacing the L2 norm with an elliptic norm induced by any Hermitian, positive-definite matrix
[20]. In section IV, circulant matrices are proposed as good choices for FDNs due to their efficiency
and versatility in practice. It is straightforward to control the eigenvalues of circulant feedback
matrices, and therefore they can be optimized to yield best reverberation according to specified
criteria. Finally, in section V we present applications in artificial reverberation and use of more
general purpose resonators.

In section IV, we introduce the circulant FDN (CFDN) and show how CFDNs can be used
to reduce computational complexity and give unique control over time-frequency behavior. In
section V, we focus on applications of CFDNs in artificial reverberation and resonator design. For
generality, we treat the complex case, although real numbers are typically used in practice.

2 Feedback Delay Networks

This section reviews FDNs along the lines indicated by Jot [9, 8] with some modifications.
As depicted in Fig. Fig. 1, an FDN is built using N delay lines, each having a length in seconds

given by τi = miT , where T = 1/Fs is the sampling period. The complete FDN is given by the
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Figure 1: Order 3 Feedback Delay Network.

following relations:

y(n) =
N∑

i=1

cisi(n) + dx(n) (1)

si(n + mi) =
N∑

j=1

ai,jsj(n) + bix(n) (2)

where si(n), 1 ≤ i ≤ N , are the delay-line outputs at time sample n. If mi = 1 for each i, we obtain
the conventional state-variable description of a discrete-time linear system [10]. In the present case,
mi are normally large integers, so the variables si(n) form only a small subset of the system state
at time n, with the remaining state variables being the samples contained within the delay lines at
time n. Using the z transform, assuming zero initial conditions, we can rewrite (2) in the frequency
domain as

Y (z) = cTS(z) + dX(z) (3)

S(z) = D(z) [AS(z) + bX(z)] (4)

where sT (z) = [s1(z), . . . , sN (z)], bT = [b1, . . . , bN ], and cT = [c1, . . . , cN ]. The diagonal matrix
D(z) = diag (z−m1 , z−m2 , . . . z−mN ) is called the “delay matrix” and A = [ai,j ]N×N is called the
“feedback matrix.”

The state variables of the FDN can be collected into a vector w as follows: List the variables
contained in the first delay line from the (m1− 1)th cell to the second cell, then those contained in
the second delay line from the (m2−1)th cell to the second cell, and so on for the other delay lines;
then attach the first cell of all the delay lines in increasing order, and finally the output variables
s1 to sN .

By assuming that each delay line is longer than two samples, the state-variable description
corresponding to this variable format for the system (2) can be found to be

y(n) = γTw(n) + dx(n)

w(n + 1) = A†w(n) + βx(n) (5)
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where

βT = [0, . . . , 0,bT ] (6)

γT = [0, . . . , 0, cT , 0, . . . , 0
︸ ︷︷ ︸

N

] (7)

The state-transition matrix is

A† =












U1 0 0 . . . 0 0 R1

0 U2 0 . . . 0 0 R2

. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . UN 0 RN

P1 P2 P3 . . . PN 0 0

0 0 0 . . . 0 A 0












(8)

where

Uj =










0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1
0 0 0 . . . 0










, (9)

Rj =










0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0
. . . . . . . . . . . . . . .
0 . . . 0
︸ ︷︷ ︸

j−1

1 0 . . . 0










, (10)

and

Pj =
















j−1







0 0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0

1 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0
















. (11)

We have

Uj ∈ C(mj−2)×(mj−2)

Rj ∈ C(mj−2)×N (12)

Pj ∈ CN×(mj−2)

The order of the system (5) is equal to the sum of the delay-line lengths:

N † =
N∑

i=1

mi
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From (4), the transfer function is easily found to be

H(z) =
Y (z)

X(z)
= cT [D(z−1)−A]−1b + d. (13)

Note that when mi = 1 for all i, the FDN specializes to a fully general state-space description
[10]. This implies any linear, time-invariant, discrete-time system can be formulated as a special
case of an FDN since every state-space description is a special case. This suggests that a wide
variety of stable FDNs can be generated by starting with any stable LTI system whatsoever and
performing the substitution z−1 ← z−mi on each delay element, or any other conformal mapping
which takes the unit circle to itself (another example being the Schroeder-allpass transformation
z−1 ← (ρ + z−mi)/(1 + ρz−mi)). Stability is preserved even when the unit-sample delays of the
original state space description are mapped using different conformal maps. This can be seen from
the matrix power series expansion

[I−D(z)A]−1

= I + D(z)A + · · ·+ Dk(z)Ak + · · · (14)

As long as ‖D(ejω)‖ ≤ I, by making use of the triangle inequality and the Cauchy-Schwarz (or
mutual consistency) inequality [20], we can write

‖I + · · ·+ Dk(z)Ak + · · · ‖
≤ ‖I‖+ · · ·+ ‖Dk(z)Ak‖+ · · ·
≤ 1 + · · ·+ ‖Dk(z)‖ · ‖Ak‖+ · · ·
≤ 1 + · · ·+ ‖D(z)‖k · ‖A‖k + · · ·
≤ 1 + · · ·+ ‖A‖k + · · ·

=
1

1− ‖A‖ (15)

Therefore, as long as ‖A‖n decays exponentially with n, stability is assured. The above derivation
extends immediately to time-varying feedback matrices Ak, provided ‖Ak‖ ≤ 1− ε for some worst-
case ε > 0.

The poles of the FDN are the solutions of either

det[A−D(z−1)] = 0 (16)

or
det[zI−A†] = 0, z 6= 0 (17)

The matrix A† is not uniquely determined by A. In fact, our ordering of the state variables
differs from that used by Jot [8]. Our ordering gives

A†A†T = diag
(

Im1−1, . . . ImN−1,AAT
)

(18)

From (18), we see that A is unitary if and only if A† is unitary. Since a unitary matrix has
eigenvalues on the unit circle, from (17) we see that it is sufficient to choose a unitary matrix in
order to have all the system poles on the unit circle. This yields a lossless FDN prototype.
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By application of the matrix inversion lemma [10] to the transfer function (13), the system zeros
are found as the solutions of

det[A− b
1

d
cT −D(z−1)] = 0 (19)

The formulation of (2) represents a prototype structure in the sense that, with the appropri-
ate choice of feedback matrix, it is a lossless structure. In practice, we must insert attenuation
coefficients and filters in the feedback loop. For example, one may insert a gain [9]

gi = αmi (20)

at the output of each delay line in the FDN. This corresponds to replacing D(z) with D(z/α) in
(4). With this choice of the attenuation coefficients, all the system poles are uniformly contracted
by a factor α, thus ensuring a uniform decay of all the modes.

In a practical realization, we normally need to introduce frequency-dependent losses such that
higher frequencies decay faster. We can do this by introducing lowpass filters after each delay line
in place of the gains gi. In this case, local uniformity of mode decay is still achieved by condition
(20), where gi and α are made frequency dependent:

Gi(z) = Ami(z), (21)

where A(z) can be interpreted as the per-sample filtering [7, 9, 29].
Notice that uniform decay of all the modes, albeit arguably desirable in artificial reverberators

for a smooth late time response, is not found in actual rooms. Normal modes are associated
with standing waves which have an absorption that depends on their orientation. For example, in a
rectangular enclosure, waves traveling in a direction normal to a wall are less absorbed than oblique
waves [17, p. 392], so that the corresponding standing waves (expressible as the superposition of
traveling waves in opposite directions) have different reverberation times. The room-acoustics
interpretation of FDNs provided in Section V points to ways of modeling such uneven decays.

3 Digital Waveguide Networks

Digital waveguide networks provide a useful paradigm for sound synthesis based on physical mod-
eling [29]. They have also been proposed for constructing arbitrarily complex digital reverbera-
tors [26] which are free of limit cycles and overflow oscillations if passive arithmetic is used [27]. In
this section we explore the relationships between DWNs and FDNs.

Fig. Fig. 2 illustrates an N -branch DWN which is structurally equivalent to the feedback loop of
an N -th order FDN. It consists of a single scattering junction, indicated by a white circle, to which
N branches are connected. The far end of each branch is terminated by an ideal non-inverting
reflection (black circle). The waves traveling into the junction are associated with the FDN delay
line outputs si(n), and the length of each waveguide is half the length of the corresponding FDN
delay line mi (since a traveling wave must traverse the branch twice to complete a round trip
from the junction to the termination and back). When mi is odd, we may replace the reflecting
termination by a unit-sample delay.
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s1(n+m1) sN(n+mN)

s1(n) sN(n)

m1/2 mN/2

Figure 2: Waveguide network consisting of a single scattering junction, indicated by an open
circle, to which N branches are connected. The far end of each branch is terminated by an ideal,
non-inverting reflection.

3.1 Lossless Scattering

The delay-line inputs (outgoing traveling waves) are computed by multiplying the delay-line outputs
(incoming traveling waves) by the N -by-N feedback matrix (scattering matrix) A = [ai,j ]. By
defining p+

i = si(n), p−i = si(n + mi), we obtain the more usual DWN notation

p− = Ap+ (22)

where p+ is the vector of incoming traveling-wave samples arriving at the junction at time n, p− is
the vector of outgoing traveling-wave samples leaving the junction at time n, and A is the scattering
matrix associated with the waveguide junction.

The junction of N physical waveguides determines the structure of the matrix A according to
the basic principles of physics.

Considering the parallel junction of N lossless acoustic tubes, each having characteristic admit-
tance Γj , the continuity of pressure and conservation of volume velocity at the junction give us the
following scattering matrix for the pressure waves [28]:

A =









2Γ1

ΓJ
− 1 2Γ2

ΓJ
. . . 2ΓN

ΓJ
2Γ1

ΓJ

2Γ2

ΓJ
− 1 . . . 2ΓN

ΓJ

. . .
2Γ1

ΓJ

2Γ2

ΓJ
. . . 2ΓN

ΓJ
− 1









(23)

where

ΓJ =
N∑

i=1

Γi (24)

(23) can be derived by first writing the volume velocity at the j-th tube in terms of pressure
waves as vj = (p+

j − p−j )Γj . Applying the conservation of velocity we can find the expression

p = 2
∑N

i=1 Γip
+
i /ΓJ for the junction pressure. Finally, if we express the junction pressure as the

sum of incoming and outgoing pressure waves at any branch, we derive (23).
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3.2 Normalized Scattering

For ideal numerical scaling in the L2 sense, we may choose to propagate normalized waves which
lead to normalized scattering junctions analogous to those encountered in normalized ladder filters
[13]. Normalized waves may be either normalized pressure p̃+

j = p+
j

√
Γi or normalized velocity

ṽ+
j = v+

j /
√

Γi. Since the signal power associated with a traveling wave is simply P+
| = (p̃+

j )2 =

(ṽ+
j )2, they may also be called root-power waves [27].

The scattering matrix for normalized pressure waves is given by

Ã =














2Γ1

ΓJ
− 1 2

√
Γ1Γ2

ΓJ
. . . 2

√
Γ1Γn

ΓJ

2
√

Γ2Γ1

ΓJ

2Γ2

ΓJ
− 1 . . . 2

√
Γ2Γn

ΓJ

. . . . . .

. . . . . .
2
√

ΓnΓ1

ΓJ

2
√

ΓnΓ2

ΓJ
. . . 2Γn

ΓJ
− 1














(25)

The normalized scattering matrix can be expressed as a Householder reflection

Ã =
2

||Γ̃||2
Γ̃Γ̃T − I (26)

where Γ̃T = [
√

Γ1, . . . ,
√

ΓN ], and Γi is the wave admittance in the ith waveguide branch. The
geometric interpretation of (26) is that the incoming pressure waves are reflected about the vector
Γ̃. Unnormalized scattering junctions can be expressed in the form of an “oblique” Householder
reflection A = 21ΓT / 〈1,Γ〉 − I, where 1T = [1, . . . , 1] and ΓT = [Γ1, . . . , ΓN ].

3.3 Complexity

It is important to note that a Householder reflection can be implemented using O(N) numerical
operations, as opposed to O(N 2) operations for a general scattering matrix (in computing Ap̃+ in
(26), first precompute the inner product Γ̃T p̃+ [5]). Since all junctions of N physical waveguides
can be expressed as a Householder reflection, all such scattering junctions require only O(N) com-
putations.

It is interesting to note that Jot [8] proposed a class of feedback matrices for the efficient
implementation of FDNs which are specialized Householder reflections. We have just shown that
the same kind of structure arises naturally, in the context of waveguide modeling, for physically
based scattering matrices.

3.4 Conditions for Losslessness

The scattering matrices for lossless physical waveguide junctions give an apparently unexplored
class of lossless FDN prototypes. However, this is just a subset of all possible lossless feedback
matrices. We are therefore interested in the most general conditions for losslessness of an FDN
feedback matrix.

Consider the general case in which A is allowed to be any scattering matrix, i.e., it is associated
with a not-necessarily-physical junction of N physical waveguides. Following the definition of

10



losslessness in classical network theory, we may say that a waveguide scattering matrix A is said to
be lossless if the total complex power [1] at the junction is scattering invariant, i.e.,

p+∗
Γp+ = p−∗

Γp−

⇒ A∗ΓA = Γ (27)

where Γ is any Hermitian, positive-definite matrix (which has an interpretation as a generalized
junction admittance). The form x∗Γx is by definition the square of the elliptic norm of x induced
by Γ, or ||x||2

Γ
= x∗Γx. Setting Γ = I, we obtain that A must be unitary. This is the case

commonly used in current FDN practice.
The following theorem gives a general characterization of lossless scattering:

Theorem 1: A scattering matrix (FDN feedback matrix) A is lossless if and only if its eigenvalues
lie on the unit circle and it admits a basis of linearly independent eigenvectors.
Proof:
In general, the Cholesky factorization Γ = U∗U gives an upper triangular matrix U which converts
A to a unitary matrix via similarity transformation: A∗ΓA = Γ⇒ A∗U∗UA = U∗U⇒ Ã∗Ã = I,
where Ã = UAU−1. Hence, the eigenvalues of every lossless scattering matrix lie on the unit circle.
It readily follows from similarity to Ã that A admits N linearly independent eigenvectors. In fact,
Ã is a normal matrix (since it is unitary), and normal matrices admit a basis of linearly independent
eigenvectors [21].

Conversely, assume |λ| = 1 for each eigenvalue of A, and that there exists a matrix T of lin-
early independent eigenvectors of A. Then the matrix T diagonalizes A to give T−1AT = D ⇒
T∗A∗T−1∗ = D∗, where D = diag(λ1, . . . , λN ). Multiplying, we obtain T∗A∗T−1∗T−1AT =
D∗D = I⇒ A∗T−1∗T−1A = T−1∗T−1. Thus, (27) is satisfied for Γ = T−1∗T−1 which is Hermi-
tian and positive definite. 2

Thus, lossless scattering matrices may be fully parametrized as A = T−1DT, where D is
any unit-modulus diagonal matrix, and T is any invertible matrix. In the real case, we have
D = diag(±1) and T ∈ <N×N .

3.5 Relation of DWNs to FDNs

When U in the proof is diagonal and positive, a physical waveguide interpretation always exists
with U = diag(Γ̃). A generalized waveguide interpretation exists for all U via vector transformers
[28, p. 55 sec. 4] in which U acts as an ideal transformer (in the classical network theory sense) on
the vector of all N waveguide variables. If p = p+ + p− denotes the vector of physical pressures
at the junction and p = p+ + p− denotes the physical volume velocities, then we have that the
junction power, defined as PJ = p∗p is invariant with respect to insertion of a vector transformer
(similarity transformation applied to the scattering matrix).

It can be quickly verified2 that all scattering matrices arising from the parallel intersection
of N physical waveguides possess one eigenvalue equal to 1 and N − 1 eigenvalues equal to −1
[28]. In the case of physical waveguides of equal impedances, the eigenvector associated with
the eigenvalue 1 corresponds to equal incoming waves, while an eigenvector associated with the

2using the eigenvectors e
T
0 = [1, . . . , 1] and e

T
k = [1, . . . , 1, 1 − ΓJ/Γk

︸ ︷︷ ︸

kth

, 1, . . . , 1], k = 1, . . . N
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eigenvalue −1 corresponds to equal incoming waves on N − 1 branches, and a large opposite wave
on the remaining branch which pulls the junction pressure to zero. Adding a vector transformer
to the parallel N -branch scattering junction gives scattering matrices of the form A = T−1DT

with D = diag(1,−1, . . . ,−1). To obtain more general eigenvalue signatures D = diag(±1), a
combination of series and parallel junctions must be used. Finally, to reach the most general
complex case, we must admit complex eigenvalues.

We now consider the relation between unitary FDN feedback matrices and waveguide scattering
junctions. As can be seen from comparing (27) to Ã∗Ã = I (true for any unitary matrix), we see
that A unitary corresponds to a scattering junction in which the total complex power is given
by the ordinary L2 norm of the incoming or outgoing traveling waves. Since the physical power
associated with an incoming wave vector p+ is PJ = p+∗

Γp+, where in the absence of a vector
transformer Γ = diagΓ1, . . . , ΓN , we see that A unitary corresponds to a scattering junction joining
waveguides of equal wave impedance, i.e., Γ = diag1, . . . , 1. Since Householder reflections comprise
only a subset unitary matrices, we see that a unitary FDN matrix corresponds to a transformer-
coupled parallel/series waveguide junction in which all branch admittances are the same. In
the more general (unnormalized) case in which the branch impedances are different, i.e., Γ =
diag(Γ1, . . . , ΓN ), we obtain (using a vector transformer) the larger class of scattering matrices
which preserve an elliptic norm as induced by a positive-definite (or Hermitian) generalized junction
impedance.

Since, as discussed above, only a subset of all N -by-N unitary matrices is given by a physical
junction of N waveguides, the unitary FDN point of view yields lossless systems outside the scope
of those suggested by multiport scattering theory. On the other hand, since only normalized
waveguide junctions exhibit unitary scattering matrices, the DWN approach gives rise to new
classes of FDNs. Moreover, by considering more than one scattering junction, the DWN approach
suggests new classes of network topologies following physical analogies. Similarly, FDN matrices
can be partitioned to embed several FDN subsystems into larger FDN systems.

Formally, every DWN can be expressed as an FDN by collecting all of its delay lines into a
diagonal delay matrix D(z) as in (4), and finding the matrix A which computes the delay-line
inputs from the delay-line outputs. Therefore, every waveguide network yields a feedback matrix
for consideration in the FDN framework. Conversely, every real FDN can be expressed as a single-
junction waveguide network using an ideal vector transformer at the junction.

Theorem 1 characterizes lossless FDN feedback matrices A as those having eigenvalues on the
unit circle, where the definition of losslessness was given by (27). It remains to be shown that
A satisfying (27) implies that the poles of the corresponding FDN are all on the unit circle. To
this end, recall the form of the state-transition matrix (8), and define the extended generalized
admittance

Γ† =

[

I 0

0 Γ

]

(28)

By analogy to the derivation of (18), we get

A†T Γ†A† = diag
(

Im1−1, . . . ImN−1,A
T ΓA

)

(29)

This equation shows that A is lossless if and only if A† is lossless, and its eigenvalues are on the
unit circle by Theorem 1. But from (17), we have that the eigenvalues of A† are the poles of the
corresponding FDN. Therefore, the FDN is lossless and its impulse response consists only of non-
increasing and non-decaying modes. Desired decay characteristics versus frequency for obtaining a
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specific artificial reverberator can now be controlled separately by means of attenuation coefficients
and filters, as indicated in section II.

3.6 Finite-Wordlength Effects

We have just seen how the FDN can be seen as a simple DWN having a not-necessarily physical
scattering matrix. In order to provide an easy control over the decay, the scattering matrix has
to satisfy the condition of losslessness (27). A finite-precision implementation of the FDN might
incur in limit cycles or overflow oscillations, due to departures from the infinite-precision lossless
prototype. Departures can be of two kinds: the finite-precision scattering matrix does not satisfy the
lossless condition (27), or the round-off noise in the matrix by vector multiplication Ap+ introduces
signal amplitude modifications. By assuming that the scattering matrix satisfies (27) in a large
extent even in finite precision, it is possible to apply the arguments used in [27, 28, 26, 6] for the
DWNs, in order to avoid limit cycles or overflow oscillations. If the matrix by vector multiplication
is performed in the straightforward way as a collection of inner products, and the matrix coefficients
have the same n bits of precision as the signals, it is just sufficient to perform these order-N inner
products in the extended precision of 2n+N−1 bits, and apply a passive truncation scheme on the
output signal. In two’s complement arithmetic, a simple passive truncation scheme is the following:

• If the N-1 most significant bits are not equal, replace the output value by the maximum-
magnitude number in n-bit two’s complement having the correct sign (saturation).

• Discard the n least significant bits and add 2−n+1 to the result if it is negative.

As far as the condition on the losslessness of the scattering matrix is concerned, general requirements
for the construction of “structurally lossless,” or at least “structurally passive” scattering matrices
have to be worked out. This topic, previously touched by Gray [6] in the N = 2 case, will be
discussed in a forthcoming paper, since a complete treatment would enlarge the scope of this paper
significantly.

4 Circulant Feedback Delay Networks

Consider the class of circulant feedback matrices having the form

A =








a(0) a(1) . . . a(N − 1)
a(N − 1) a(0) . . . a(N − 2)
. . .
a(1) . . . a(N − 1) a(0)








This class of matrices gives rise to a class of FDNs we call Circulant Feedback Delay Networks
(CFDN). The following two facts can be proved [3]:

Fact 1 : If a matrix is circulant, it is normal, i.e., A∗A = AA∗.

Fact 2 : If a matrix is circulant and lossless, it is unitary.
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It is well known that every circulant matrix is diagonalized by the Discrete Fourier Transform
(DFT) matrix [3]. This implies that the eigenvalues of A can be computed by means of the DFT
of the first row:

{λ(A)} = {A(k)} = DFT ([a(0) . . . a(N − 1)]T )

where {λ(A)} denotes the set of all eigenvalues of A, and {A(k)} denotes the set of complex DFT
samples obtained from taking the DFT of {a(·)}.

4.1 Design of Poles and Zeros in CFDNs

A matrix that is both unitary and circulant has all eigenvalues on the unit circle, and the DFT can
be used to compute the eigenvalue phases. In the case of equal-length delay lines, the eigenvalues
determine the resonance frequencies in a simple way. From (16), when D(z−1) = zmI, the system
poles are the m-th complex roots of the eigenvalues of A.

Conversely, we can easily design a circulant matrix to have a desired distribution of eigenvalues.
This is also true for any lossless matrix, since Theorem 1 gives that any A of the form A = T−1DT

is lossless, where D is any unit-modulus diagonal matrix, and T is any invertible matrix. Thus, a
lossless matrix is characterized by the arguments of its eigenvalues and a similarity transformation
matrix T. The advantage of choosing circulant FDNs over other kinds of FDNs is the possibility
of computing A from its eigenvalues very efficiently by means of a single inverse FFT.

As we will see in section V, in a practical implementation the delay lengths are typically not
equal. However, the equal-delay case is easier to analyze. The limitations and advantages of such
a choice will become clearer in section V.

The actual presence of resonance peaks corresponding to the eigenvalues depends on the posi-
tions of the zeros, as given by (19). Assuming equal-length delay lines and d = 1, (19) becomes

det[A− bcT − zmI] = 0 (30)

which means that the zeros are the m-th complex roots of the eigenvalues of A− bcT .
In order to have “colorless” reverberation, it may be desirable to make the envelope of the

amplitude response flat. To do this, each zero should be equal to the reciprocal of a pole. In
prototype CFDNs, the feedback matrix is lossless, and the system poles are on the unit circle, so
the zeros must equal the poles. However, when all zeros and poles cancel exactly, the impulse
response of the FDN degenerates to an impulse.3 This is a general problem with any all-pass
reverberator: Lengthening the reverberation time without changing the delay lengths forces the
impulse response converge to an impulse. In our case, we depart from the idealized case by slightly
changing the delay lengths. As we will show in section V, this approach leads to reverberators
having a frequency response which is nearly flat at low frequencies, while preserving the richness
of the echo density in the time domain.

Therefore, we continue treating the prototype case of equal-length delay lines and d = 1, and
show that we can obtain perfect canceling of zeros and poles by using (1) bT = [1, 1, . . . , 1] and
(2) c having n entries equal to 1, n entries equal to −1, and zeros for the remaining entries. This
result is due to the following

3Since we are discussing discrete-time systems, the term “impulse” means the same thing as “unit sample pulse.”
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Theorem 2: Given a circulant NxN matrix A, let A′ be obtained by adding a constant c to
each entry of n rows (columns) and subtracting the same constant c from each entry of another n
rows (columns). Then A and A′ have the same eigenvalues.

Before providing the proof of Theorem 2, we need to prove the following
Lemma: All the eigenvectors of a circulant matrix other than the “dc” vector [1, . . . , 1]T lie

in the null space of any matrix with constant rows. Thus, adding constant rows cannot alter
eigenvalues or eigenvectors other than the 0th.

Proof: This follows immediately from the fact that the eigenvectors of every circulant matrix
are given by the columns of the DFT matrix of the same size, and these vectors are orthogo-
nal. Therefore, a constant row is orthogonal to all eigenvectors of the DFT matrix except the dc
eigenvector.

The lemma states that all we can do by adding constant rows to a circulant matrix is move the
“dc” eigenvector to some other vector and change its eigenvalue.

Proof of Theorem 2:
Consider the matrix A′ given by:

A′ = A− bcT (31)

where bT = [1,−1, 0, . . . , 0] and cT = [1, 1, . . . , 1]. Since any circulant matrix is diagonalized by
the DFT matrix, if we pre-multiply and post-multiply both sides of (31) by the DFT matrices F∗

and F, we obtain
F∗A′F = F∗AF− F∗bcTF = D− F∗(bcTF)

where D is a diagonal matrix and the term within parentheses is an N by N matrix having non-null
entries only in position (1,1) and (2,1). Moreover these two entries have opposite sign. It turns
out that F∗bcTF has non-null elements only on the first column under the diagonal. This means
that the matrix A′ can be triangularized by means of the DFT matrix and its eigenvalues (found
on the diagonal) are the same as those of A. This argument works for any number of oppositely
signed couples of distinct values arbitrarily distributed in the vector b. The same argument can be
followed for proving the claim relative to the columns. In this case we would start by forming the
product F∗bcT . 2

Note that the 0th eigenvalue is no longer a “dc” eigenvalue. The corresponding eigenvector
must be found in ker(A−bcT − λ0I), where ker() gives the nullspace of its argument. In the case
of a real circulant matrix A with eigenvalues along the unit circle, we have that λ0 = 1 (the sum
of the elements of a row of A is 1).

With the above choice of b and c coefficients, we obtain a perfectly flat amplitude response
for equal-length delay lines. However, this is degenerate since this is the condition for pole-zero
cancellation. As we will show in section V, when using slightly different delay lengths, a nearly flat
response at low frequencies is obtained as a perturbation of the pole-zero cancellation configuration.

4.2 Computational Complexity

In an N -th order FDN, the core computations consist of N updates of the delay lines and a matrix
by vector multiplication. The delay line operations can proceed in parallel. The matrix by vector
multiplication requires in general O(N 2) operations (multiplications and additions). If the matrices
arise from the scattering coefficients of a waveguide junction, the computations reduce to O(N).
The same order of complexity is required by the normalized waveguide junction. For the special
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case of a junction of equal-impedance waveguides, the multiplications can be replaced by shifts
when N is a power of 2 [26]. In all these efficient cases the eigenvalues of the feedback matrix are
constrained to be at +1 or -1. The circulant matrix offers a more general eigenvalue distribution.
Moreover, the matrix by vector multiplication can be implemented very efficiently in hardware.
This multiplication can be viewed as a circular convolution of the column vector with the first
row of the matrix. Such a convolution can be performed, when N is a power of 2, using two
FFTs (one of which can be precomputed), an elementwise product between two N -vectors, and
an inverse FFT. The complexity of this algorithm is O(N log(N)). It is easy to implement this
matrix-vector product in VLSI by means of the butterfly or other hypercubic architectures [12].
These architectures allow computations of the FFT in O(log(N)) time steps, and the algorithm
can be pipelined.

The parallel implementation of waveguide scattering matrices cannot be done in less than
O(log(N)) time steps, because of the scalar product that is involved in Householder reflections
of any kind. Hence, in parallel implementations we lose the advantage of waveguide scattering
matrices over circulant matrices.

Moreover, we can use number-theoretic Fourier transforms [12] in order to compute the circular
convolution. Such transforms work over commutative rings, and can be arranged in such a way
that all multiplications are replaced by shifts. Since in the convolution we have both the direct and
inverse transforms, the overall result remains correct.

The circulant structure of A is advantageous for purposes of real-time control as well. In the
first place, the entire matrix is determined by one of its rows or columns, and no matter how a
row or column is modified, as long as the rest of the matrix is modified accordingly to preserve
the circulant structure, the matrix will have unit-modulus eigenvalues as needed for losslessness.
Furthermore, the top row of a circulant matrix is obtained from its eigenvalues by means of an
inverse DFT. Therefore, it is possible to efficiently generate a continuous family of circulant matrices
by continuously varying the complex phases of the eigenvalues. Moreover, if the matrix-vector
multiplication is implemented in the frequency domain, the inverse DFT is not needed. Thus, we
may move the N eigenvalues to arbitrary points on the unit circle and generate a wide family of
efficiently computed lossless feedback matrices.

5 Applications

We have been using circulant networks for various purposes in sound synthesis and processing.
Artificial reverberation is probably the most significant application, but other significant areas of
interest can be found in sound synthesis and filtering.

5.1 Digital Reverberation

Two quantities have been proposed as criteria for measuring the “naturalness” of synthetic rever-
beration: the time density and the frequency density [8]. A good reverberator should provide high
values of both densities, thus giving smooth, dense time and frequency responses.

The frequency density Df is defined as the average number of resonances per Hertz. A general
expression can be derived from the order of the system (5), assuming that all the poles are distinct
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and no cancellation occurs:

Df =
1

Fs

N∑

i=1

mi (32)

In real rooms, the frequency density increases at higher frequencies (as can be seen from (35)
below).

In the prototype case where the delay lines all have the same length m, we have

Df =
Nm

Fs

(33)

The time density Dt is defined as the number of nonzero samples per second in the impulse re-
sponse. In actual rooms, Dt is an increasing function of time. In order to obtain dense reverberation
after the early reflections (e.g., after 80 msec), it helps to use different delay lengths.

The actual positions of frequency peaks depend on the feedback matrix and the delay lengths.
If the delay lengths are fixed, we can vary some time-frequency properties of the structure simply
by varying the distribution of eigenvalues of the feedback matrix. The total length of the delay
lines should be chosen in such a way that the frequency density, as determined by (32), is high
enough. Then the matrix eigenvalues can be adjusted to avoid resonant peak clustering or other
undesirable mode distributions.

It is interesting to discuss the effect of eigenvalues in the prototype case of equal delays. A
uniform distribution of eigenvalues along the unit circle is optimum for the frequency response in
the sense that it minimizes the maximum distance between peaks. However, it produces a highly
repetitive time response. Conversely, clustering the eigenvalues around a point on the unit circle
can be good for maximizing the length of time patterns, but the clustering of frequency peaks
produces a poor reverberator amplitude response vs. frequency. We see from these considerations
that there is a time-frequency tradeoff. This tradeoff can be addressed using circulant matrices.

A couple of examples of different eigenvalue distributions are given in Fig. Fig. 3. The matrix A2

used in Fig. Fig. 3b is simply obtained by a right circular shift of the rows of the matrix A1 which
is given by the junction of equal-impedance waveguides and, as already stated, has eigenvalues only
at 1 and −1. We can express A2 as the product A1Π where Π is the right-shift matrix

Π =






0 1 0
0 0 1
1 0 0




 . (34)

Both A1 and Π are circulant, therefore the eigenvalues of A2 are given by the collection of the
element-wise products of the eigenvalues of A1 and the eigenvalues of Π, which are the N -th
complex roots of 1 [3]. For clarity, we set all the delay lengths equal in the examples.

As a side comment, we notice that Π is the scattering matrix of the circulator, a circuit device
which can be used to obtain the multiplication of one-port scattering parameters [18].

The shape of the frequency response depends also on the zeros which were discussed in section
IV. In particular, Theorem 2 provides a way of setting the zeros exactly over the poles in the
prototype equal-delay case. We anticipated in section IV that the way to choose the vectors b and
c indicated in Theorem 2 can be useful for getting a flat amplitude response at low frequencies
when the delay lengths are slightly varied from the prototype case. Fig. Fig. 4 depicts the time
and frequency responses for the CFDN using the same feedback matrix as in Fig. Fig. 3b, having
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A1 =





−1/3 2/3 2/3
2/3 −1/3 2/3
2/3 2/3 −1/3



 A2 =





2/3 −1/3 2/3
2/3 2/3 −1/3
−1/3 2/3 2/3





λ1 =
[
−1 1 −1

]
λ2 =

[
e−jπ/3 1 ejπ/3

]

Figure 3: Time and Frequency behaviors for two Circulant Feedback Delay Networks which differ
only by a shift on the rows of the feedback matrix.
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Figure 4: Zero positioning which gives a nearly flat low-frequency response for the CFDN of Fig.
3b.
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bT = [1, 1, 1], cT = [0,−1, 1], and delay lengths m = [16, 17, 15]. As we can see from Fig. Fig. 4, we
are able to get a nearly flat amplitude response at low frequencies without losing the reverberating
character of the time response. We believe that this is a good alternative to allpass filters which
tend to have degenerate impulse responses when the poles approach the unit circle.

5.2 Physical Room Modeling with FDNs

A flat amplitude response at low frequencies, while desirable in several practical situations, is not
found in actual rooms. Therefore, if the goal is to model the reverberation of a physical room,
the way indicated by Theorem 2 is not appropriate. Somewhat happily, the FDN can be the
kernel of a model of rectangular room, and its parameters can be interpreted in a physical and
geometrical framework. In this section, we give only a sketch of this framework, since the details
of the underlying metaphor are beyond the scope of this paper, and can be found in [23].

Consider a lossless shoe-box shaped room, having length lx, depth ly, and height lz. For such a
room, it is possible to compute analytically the frequencies of the normal modes [17] as

fnx,ny ,nz =
c

2

√
√
√
√
√





(
nx

lx

)2

+

(

ny

ly

)2

+

(
nz

lz

)2


 (35)

where nx, ny, nz = 0, 1, 2, . . ., and c is the speed of sound in air. Each normal mode is associated
with a direction in space, whose cosines, made by the wave propagation with respect to the x, y,
and z axes, are

vx

v
=

nxc

2flx
,

vy

v
=

nyc

2fly
,

vz

v
=

nzc

2flz
, (36)

where v is the magnitude of the (vector) spatial frequency, and the subscripts in fnx,ny ,nz have
been dropped for conciseness.

The triple n = (nx, ny, nz) completely characterizes a normal mode. All the triples which are
multiples are associated with a harmonic series of frequencies and with the same direction in space.
This suggests that any harmonic series of normal mode frequencies can be obtained by means of
a linear resonator (in other words, a comb filter) whose length in seconds is set to d0 = 1/f0,
where f0 is the fundamental frequency of the harmonic series. Therefore, we can decompose the
modal distribution of the response of an actual room into harmonic subsets (a harmonic of fnx,ny ,nz

is obtained by multiplying nx, ny, and nz by the same integer). Sorting these harmonic subsets
according to their fundamental frequencies and taking the reciprocals of the N lowest fundamental
frequencies yields a parallel comb filter representation of the room (i.e., an FDN with diagonal
feedback matrix), so that the FDN reproduces the lowest eigenfrequencies exactly. This procedure
was already outlined in [8] as a mean of identifying the parallel comb-filter parameters from a
measured impulse response.

We can elaborate the representation further by interpreting the quantity d0 as the time taken
by a plane wavefront to travel a certain distance along the direction (36) in space. In fact, a normal
mode and all its harmonically related multiples can be thought of as a plane wave bouncing back
and forth in the closed environment [17]. For a finite medium, in order to support such an infinite
plane wave, the planar fronts have to be bent at the walls such that they form a constant-area closed
surface. It can be verified that the time d0 is the time interval between two successive collision of
plane wavefronts.
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Once established that, in an idealized rectangular room, each harmonic subset of normal modes
can be represented by a linear resonator oriented along a given direction in space, we can introduce
other “second-order” effects into the basic model.

Let us consider an octant in space. Taking the first N fundamental frequencies in the harmonic-
subset decomposition of the normal modes corresponds to sampling in space along N directions.
An object in any point of the space will provide scattering among the N directions. The walls
themselves, when they are not ideally smooth, scatter the waves among different directions. We
can think of lumping all these diffusion effects and representing them in the non-diagonal elements
of the scattering matrix of a FDN. With some approximation, it was also shown in [23] that
an isotropic object in a non-diffusive rectangular room can be represented by a circulant matrix,
provided that the spatial sampling is almost uniform and the proper ordering of directions is chosen.

The geometric interpretation allows one to properly excite the modes according to the position
of the sound source, by just replacing each coefficient in the vector b by a suitable cascade of
FIR comb filters [23]. The position where we listen to the sound is related to the c coefficients in
a similar way. It is also quite easy to take into account the radiation pattern of the source and
the directivity of the pick-up. Perhaps more importantly, the absorption coefficients of the walls
can be made direction-dependent, as they are found in reality, as they affect the different “linear
resonators” differently.

In the model at hand, the matrix element ai,j scales the signal transmission from mode j to
mode i. The diagonal of the feedback matrix determines the strength of the “standing waves” set
up along each pattern. Equivalently, we can think of a DWN modeling the parallel junction of N
acoustic tubes, where each tube gives rise to a harmonic subset of normal modes.

The physical modeling viewpoint is limited by the fact that only N “standing-wave paths” in
the room are being simulated, and all non-specular reflections are being forced to enter some subset
of the supported ray paths.

In the model, the diffusivity of the whole reverb is lumped in the properties of the scattering
matrix. This is a dramatic simplification, but it allows better control of diffusivity in isolation from
other room parameters.

The geometrical interpretation is useful for computing the lengths of the delay lines according
to the dimensions of a particular room, since each wavefront path corresponds to a normal mode. In
previous work on artificial reverberation [25, 16], the choice of the delay-line lengths in the all-pass
and comb-filter sections is a primary issue. Typically, the choice is guided by heuristic rules or
number-theoretic criteria, and a lot of trial and error is often necessary to obtain good values.

5.3 Physical Room Modeling with DWNs

Recent developments in physical modeling using digital waveguides have included the use of a
waveguide mesh to model 2D membranes and 3D rooms [32, 33, 24]. In the membrane, for example,
a rectilinear mesh of digital waveguides can be interconnected via four-port scattering junctions to
provide lossless prototypes for “plate reverberators” and the like. A single dispersive waveguide
(made dispersive using embedded allpass filters) can be used to model “spring reverberators.”
Savioja et al. [24] have found that the rectilinear 3D waveguide mesh has good room simulation
properties at low frequencies.

Since reverberation quality generally increases with the number dimensions (from spring to
plate to acoustic space), it is plausible to expect that higher dimensional waveguide meshes will
provide better reverberation than we have ever known. Generalizing (35) to higher dimensions,
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one can see that the higher the dimensionality, the more rapidly the mode density increases with
frequency. However, above the “Schroeder limit” at which the modes are so densely packed that
the ear cannot resolve them, increasing the density should have no audible effect. Nevertheless, it
is an interesting direction to pursue.

The waveguide mesh is structurally lossless so that there is no attenuation error in the sampled
wave propagation. However, the grid quantization does give rise to dispersion error: The speed
of sound effectively varies somewhat as a function of frequency and propagation direction on the
mesh. Generally, results are very accurate at low frequencies, but sound speed decreases gradually
as frequency increases in all but certain directions which tend to be diagonals along the mesh [32].
The choice of mesh geometry has a strong effect on the dispersion behavior [33]. It also strongly
affects computational complexity. As an example, whenever an isotropic mesh utilizes N -port
scattering junctions in which N is a power of 2, the scattering matrices require no multiplies [26].
For rectilinear meshes, membranes are multiply free, as are solids in 4D (since the number of ports
is 2N , in N dimensional space). The tetrahedral mesh, analogous to the diamond crystal, requires
no multiplies to fill 3D space. Multiply-free waveguide meshes can be integrated very densely in
VLSI.

A final word about waveguide meshes is that they, like any other LTI system, can be expressed
in a sparse state-space form which yields an FDN that can be interpreted as a physical model.

5.4 Practical FDN Design

In our experience, given an FDN reverberator structure, setting the delay lengths can be a rather
tedious job. The vast majority of possible delays just provide poor results in the sense that the
time response is too “rough” or the frequency response is too “colored.” An interesting approach
to this problem might be to use nonlinear optimization techniques such as “simulated annealing”
or “genetic algorithms” to optimize the delay lengths such that “perceptual uniformity” of the
response is maximized in the time and frequency domains jointly.

Designing the delay lengths from room geometry has the property of giving a reverberator
which is always consistent with a desired room in that the low-frequency modes are matched.
However, there does not seem to be any compelling reason to match specific low-frequency mode
tunings. Noticeable room resonances are normally perceived as defects in a listening space. Early
reflections, on the other hand, contribute strongly to the perceived “spatial impression” [2]. In other
applications, however, such as modeling the soundboard of a piano as a reverberator, the specific
coloring or “equalization” provided by the reverberator is important and must be preserved. In
such applications, it is normally necessary to match low-frequency resonances accurately and high-
frequency resonances only statistically.

When the FDN order is large (larger than 8 for satisfactory results), poor results can still be
obtained when modeling desired room dimensions which are not favorable. In fact, even for the shoe-
box room shape, the relative dimensions play a very important role in determining the smoothness
of the reverb [15]. Of course, diffusion contributes significant smoothing to the response, so full
feedback matrices (as opposed to diagonal feedback matrices) are especially needed to achieve good
reverberators using low-order FDNs.

On balance, it seems that what is needed for good reverberator design in general is

(1) precise matching of early reflections,

(2) minimal coloration due to uneven mode distributions in the frequency domain,
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(3) an appropriate smoothly declining decay-time versus frequency, and

(4) smooth, rich echo density late in the impulse response, having no noticeable patterns.

These desiderata indicate that, rather than attempting to model real rooms, lossless prototype
FDNs optimizing criteria (2) and (4) should be found, for a given order, which have at least one
delay line long enough to support injection of specific early reflections to satisfy (1), and then
lowpass filters as in (21) should be added to satisty criterion (3). The main open issue is how the
optimization of (2) and (4) should best be carried out for specific classes of structurally lossless
feedback matrices.

5.5 Resonators

FDN’s with short delay lines may be used to produce resonances irregularly spread over frequency.
A possible application could be the simulation of resonances in the body or soundboard of a string
instrument.

M. Mathews and J. Kohut [14] showed that, in this kind of simulation of the violin body, the
exact position and height of resonances is not usually important; on the contrary, they stated that
the Q’s of the resonances must be sufficiently large and the peaks must be sufficiently close together.
Thus, even in rather small physical resonators, a statistical matching may be as effective as a more
precise, mode-for-mode matching.

With CFDNs we can easily achieve these goals, and we can vary the distribution of peaks by
acting on the delay lengths and/or the feedback matrix. In this context, the main advantage of
using CFDNs over general FDNs is that the feedback matrix has N parameters which are related
to the eigenvalues by means of a DFT. This means we have the possibility of controlling a large
number of resonances using a number of parameters which is linear in the order of the structure,
and the parameter control can be performed very efficiently and safely, i.e., without running into
instabilities. The control over matrix eigenvalues is complementary with respect to the control of
delay lengths: while changing a delay has a stretching or squeezing effect on resonance positions all
along the frequency axis, changing the eigenvalues produces alternative changes in the distribution
of resonances, such as clustering the peaks, as is illustrated in Fig. Fig. 3.

Another interesting application of CFDNs is as resonators in a feedback loop for pseudo-physical
sound-synthesis techniques. By exciting these structures with bursts of white noise we obtain a
multidimensional extension of the Karplus-Strong algorithm [11], that is very effective for simulating
membranes and bars. Alternatively, we can couple these resonators with nonlinear exciters and
explore new families of sustained sounds as in waveguide synthesis [29].

We have been using effectively CFDNs in live-electronic performances, where the exciting signal
is coming from a traditional instrument, and the CFDN provides a complicated filtering pattern
whose frequency shape can be controlled in real-time by its parameters (eigenvalues or row ele-
ments).

6 Conclusion

This paper presented generalizations and new special cases for the matrix used in Feedback Delay
Networks. In particular, necessary and sufficient conditions were derived for losslessness of such a
matrix. The correspondence between FDNs and Digital Waveguide Networks can be used to obtain
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FDN parameters based on the physics and geometry of a real acoustic space, rather than by rules
of thumb or number-theoretic rules.

In proposing the CFDN structure, we have tried to achieve two goals: efficiency and versatility
with respect to the time-frequency behavior. Efficiency is achieved by taking advantage of the
circulant structure of the feedback matrix, and it increases with the size of the matrix. Versatility
is achieved by introducing the matrix eigenvalues into the design process for artificial reverberators.
Passing from the eigenvalues to the matrix coefficients requires only a single inverse DFT or FFT.
Eigenvalues act on the distribution of frequency peaks, thus giving controls pertaining to the color
and smoothness of the reverberation.

In addition to application of CFDNs in artificial reverberation, we have outlined some other
uses as resonators in sound synthesis and processing.
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