
DSP Programming with Faust, Q and SuperCollider

Yann Orlarey∗, Albert Gräf†, and Stefan Kersten‡

Abstract

Faust is a functional programming language for real-time sig-
nal processing and synthesis that targets high-performance
signal processing applications and audio plugins. The paper
gives a brief introduction to Faust and discusses its interfaces
to Q, a general-purpose functional programming language,
and SuperCollider, an object-oriented sound synthesis lan-
guage and engine.

1 Introduction
Faust is a programming language for real-time signal pro-

cessing and synthesis that targets high-performance signal
processing applications and audio plugins. This paper gives
a brief introduction to Faust, emphasizing practical examples
rather than theoretic concepts which can be found elsewhere
(Orlarey, Fober, and Letz 2004).

A Faust program describes a signal processor, a DSP
algorithm that transforms input signals into output signals.
Faust is a functional programming language which models
signals as functions (of time) and DSP algorithms as higher-
order functions operating on signals. Faust programs are
compiled to efficient C++ code which can be included in
C/C++ applications, and which can also be executed either
as standalone programs or as plugins in other environments.
In particular, in this paper we describe Faust’s interfaces to
Q, an interpreted, general-purpose functional programming
language based on term rewriting (Gräf 2005), and Super-
Collider (McCartney 2002), the well-known object-oriented
sound synthesis language and engine.

2 Faust
The programming model of Faust combines a functional

programming approach with a block-diagram syntax. The
∗Grame, Centre National de Creation Musicale, Lyon, France, or-

larey@grame.fr
†Dept. of Music Informatics, Johannes Gutenberg University Mainz, Ger-

many, Dr.Graef@t-online.de
‡Dept. of Communication Science, Technical University Berlin, Ger-

many, stefan.kersten@tu-berlin.de

functional programming approach provides a natural frame-
work for signal processing. Digital signals are modeled as
discrete functions of time, and signal processors as second or-
der functions that operate on them. Moreover Faust’s block-
diagram composition operators, used to combine signal pro-
cessors together, fit in the same picture as third order func-
tions.

Faust is a compiled language. The compiler translates
Faust programs into equivalent C++ programs. It uses sev-
eral optimization techniques in order to generate the most ef-
ficient code. The resulting code can usually compete with,
and sometimes outperform, DSP code directly written in C.
It is also self-contained and doesn’t depend on any DSP run-
time library. To assess the quality of the Faust-generated code
and the effects of the optimizations performed by the Faust
compiler, we benchmarked Jezar’s Freeverb1 and Maarten de
Boer’s Tapiir 0.7.1 C/C++ codes against the corresponding
Faust versions of these algorithms. For lack of space, we can-
not report the individual test results here, but in summary we
measured the Faust versions to be 28% faster for the Freeverb
and 49% faster for Tapiir compared to the original codes.

Thanks to specific architecture files, a single Faust pro-
gram can be used to produce code for a variety of platforms
and plugin formats. These architecture files act as wrappers
and describe the interactions with the host audio and GUI sys-
tem. Currently more than 8 architectures are supported (see
Table 1) and new ones can be easily added.

alsa-gtk.cpp ALSA application
jack-gtk.cpp JACK application
sndfile.cpp command line application
ladspa.cpp LADSPA plugin
max-msp.cpp Max MSP plugin
supercollider.cpp Supercollider plugin
vst.cpp VST plugin
q.cpp Q language plugin

Table 1: The main architecture files available for Faust

In the following subsections we give a short and informal
introduction to the language through two simple examples.
Interested readers can refer to (Orlarey, Fober, and Letz 2004)
for a more complete description.

2.1 A simple noise generator
A Faust program describes a signal processor

by combining primitive operations on signals (like
+,−, ∗, /,√, sin, cos, . . .) using an algebra of high level
composition operators (see Table 2). You can think of these
composition operators as a generalization of mathematical
function composition f ◦ g.

f ∼ g recursive composition
f , g parallel composition
f : g sequential composition
f <: g split composition
f :> g merge composition

Table 2: The five high level block-diagram composition op-
erators used in Faust

A Faust program is organized as a set of definitions with at
least one for the keyword process (the equivalent of main
in C).

Our noise generator example noise.dsp only involves
three very simple definitions. But it also shows some specific
aspects of the language:

random = +(12345) ˜ *(1103515245);
noise = random/2147483647.0;
process = noise * checkbox("generate");

The first definition describes a (pseudo) random number
generator. Each new random number is computed by mul-
tiplying the previous one by 1103515245 and adding to the
result 12345.

The expression +(12345) denotes the operation of
adding 12345 to a signal. It is an example of a common tech-
nique in functional programming called partial application:
the binary operation + is here provided with only one of its
arguments. In the same way *(1103515245) denotes the
multiplication of a signal by 1103515245.

The two resulting operations are recursively composed
using the ∼ operator. This operator connects in a feed-
back loop the output of +(12345) to the input of
*(1103515245) (with an implicit 1-sample delay) and the
output of *(1103515245) to the input of +(12345).

The second definition transforms the random signal into a
noise signal by scaling it between -1.0 and +1.0.

Finally, the definition of process adds a simple user inter-
face to control the production of the sound. The noise signal
is multiplied by a GUI checkbox signal of value 1.0 when it
is checked and 0.0 otherwise.

2.2 Invoking the compiler
The role of the compiler is to translate Faust programs into

equivalent C++ programs. The key idea to generate efficient

code is not to compile the block diagram itself, but what it
computes.

Driven by the semantic rules of the language the compiler
starts by propagating symbolic signals into the block diagram,
in order to discover how each output signal can be expressed
as a function of the input signals.

These resulting signal expressions are then simplified and
normalized, and common subexpressions are factorized. Fi-
nally these expressions are translated into a self contained
C++ class that implements all the required computation.

To compile our noise generator example we use the fol-
lowing command :

$ faust noise.dsp

This command generates the following C++ code:

class mydsp : public dsp
{
private:

int R0_0;
float fcheckbox0;

public:

virtual int getNumInputs() {
return 0;

}
virtual int getNumOutputs() {
return 1;

}
virtual void init(int samplingFreq) {
fSamplingFreq = samplingFreq;
R0_0 = 0;
fcheckbox0 = 0.0;

}
virtual void buildUserInterface(UI* ui) {
ui->openVerticalBox("faust");
ui->addCheckButton("generate",

&fcheckbox0);
ui->closeBox();

}
virtual void compute (int count,

float** input, float** output) {
float* output0; output0 = output[0];
float ftemp0 = 4.656613e-10f*fcheckbox0;
for (int i=0; i<count; i++) {
R0_0 = (12345 + (1103515245 * R0_0));
output0[i] = (ftemp0 * R0_0);

}
}

};

The generated class contains five methods.
getNumInputs() and getNumOutputs() return

the number of input and output signals required by our signal
processor. init() initializes the internal state of the signal
processor. buildUserInterface() can be seen as a
list of high level commands, independent of any toolkit, to
build the user interface. The method compute() does the
actual signal processing. It takes 3 arguments: the number
of frames to compute, the addresses of the input buffers and
the addresses of the output buffers, and computes the output
samples according to the input samples.

The faust command accepts several options to control
the generated code. Two of them are widely used. The option
-o outputfile specifies the output file to be used instead of the
standard output. The option -a architecturefile defines the
architecture file used to wrap the generate C++ class.

For example the command faust -a q.cpp -o
noise.cpp noise.dsp generates an external object for
the Q language, while faust -a jack-gtk.cpp -o
noise.cpp noise.dsp generates a standalone Jack ap-
plication using the GTK toolkit.

Another interesting option is -svg that generates one or
more SVG graphic files that represent the block-diagram of
the program as in Figure 1.

Figure 1: Graphic block-diagram of the noise generator pro-
duced with the -svg option

2.3 The Karplus-Strong algorithm
Karplus-Strong is a well known algorithm first presented

by Karplus and Strong in 1983 (Karplus and Strong 1983).
Whereas not completely trivial, the principle of the algo-
rithm is simple enough to be described in few lines of Faust,
while producing interesting metallic plucked-string and drum
sounds.

The sound is produced by an impulse of noise that goes
into a resonator based on a delay line with a filtered feedback.

The user interface contains a button to trigger the sound pro-
duction, as well as two sliders to control the size of both the
resonator and the noise impulse, and the amount of feedback.

2.3.1 The noise generator

We simply reuse here the noise generator of the previous
example (subsection 2.1).

random = +(12345) ˜ *(1103515245);
noise = random/2147483647.0;

2.3.2 The trigger

The trigger is used to transform the signal delivered
by a user interface button into a precisely calibrated control
signal. We want this control signal to be 1.0 for a duration of
exactly n samples, independentely of how long the button is
pressed.

impulse(x) = x - mem(x) : >(0.0);
decay(n,x) = x - (x>0.0)/n;
release(n) = + ˜ decay(n);
trigger(n) = button("play") : impulse

: release(n) : >(0.0);

For that purpose we first transforms the button signal into
a 1-sample impulse corresponding to the raising front of the
button signal. Then we add to this impulse a kind of release
that will decrease from 1.0 to 0.0 in exactly n samples. Fi-
nally we produce a control signal which is 1.0 when the signal
with release is greater than 0.0.

All these steps are combined in a four stages sequential
composition with the operator ’:’.

2.3.3 The resonator

The resonator uses a variable delay line implemented us-
ing a table of samples. Two consecutive samples of the delay
line are averaged, attenuated and fed back into the table.

index(n) = &(n-1) ˜ +(1);
delay(n,d,x)= rwtable(n, 0.0, index(n),

x, (index(n)-int(d))&(n-1));
average(x) = (x+mem(x))/2;
resonator(d,a) = (+ : delay(4096, d-1))

˜ (average : *(1.0-a));

2.3.4 Putting it all together

The last step is to put all the pieces together in a sequential
composition. The parameters of the trigger and the resonator
are controlled by two user interface sliders.

dur = hslider("duration",128,2,512,1);
att = hslider("attenuation",

0.1,0,1,0.01);
process = noise

: *(trigger(dur))
: resonator(dur,att);

A screen shot of the resulting application (compiled with
the jack-gtk.cpp architecture) is reproduced in Figure 2.
It is interesting to note that despite the fact that the duration
slider is used twice, it only appears once in the user interface.
The reason is that Faust enforces referential transparency for
all expressions, in particular user interface elements. Things
are uniquely and unequivocally identified by their definition
and naming is just a convenient shortcut. For example in the
following program, process always generate a null signal:

foo = hslider("duration", 128, 2, 512, 1);
faa = hslider("duration", 128, 2, 512, 1);
process = foo - faa;

Figure 2: Screenshot of the Karplus-Strong example gener-
ated with the jack-gtk.cpp architecture

3 Faust and Q
Faust is tailored to DSP programming, and as such it is

not a general-purpose programming language. In particu-
lar, it does not by itself have any facilities for other tasks
typically encountered in signal processing and synthesis pro-
grams, such as accessing the operating system environment,
real-time processing of audio and MIDI data, or presenting
a user interface for the application. Thus, as we already dis-
cussed in the preceding section, all Faust-generated DSP pro-
grams need a supporting infrastructure (embodied in the ar-
chitecture file) which provides those bits and pieces.

One of the architectures included in the Faust distribu-
tion is the Q language interface. Q is an interpreted func-
tional programming language which has the necessary facil-
ities for doing general-purpose programming as well as soft

real-time processing of MIDI, OSC a.k.a. Open Sound Con-
trol (Wright, Freed, and Momeni 2003) and audio data. The
Q-Faust interface allows Faust DSPs to be loaded from a Q
script at runtime. From the perspective of the Faust DSP, Q
acts as a programmable supporting environment in which it
operates, whereas in Q land, the DSP module is used as a
“blackbox” to which the script feeds chunks of audio and con-
trol data, and from which it reads the resulting audio output.
By these means, Q and Faust programs can be combined in
a very flexible manner to implement full-featured software
synthesizers and other DSP applications.

In this section we give a brief overview of the Q-Faust
interface, including a simple but complete monophonic syn-
thesizer example. For lack of space, we cannot give an intro-
duction to the Q language here, so instead we refer the reader
to (Gräf 2005) and the extensive documentation available on
the Q website at http://q-lang.sf.net.

3.1 Q module architecture
Faust’s side of the Q-Faust interface consists of the Q ar-

chitecture file, a little C++ code template q.cpp which is
used with the Faust compiler to turn Faust DSPs into shared
modules which can be loaded by the Q-Faust module at run-
time. This file should already be included in all recent Faust
releases, otherwise you can also find a copy of the file in the
Q-Faust distribution tarball.

Once the necessary software has been installed, you
should be able to compile a Faust DSP to a shared module
loadable by Q-Faust as follows:

$ faust -a q.cpp -o mydsp.cpp mydsp.dsp
$ g++ -shared -o mydsp.so mydsp.cpp

Note: If you want to load several different DSPs in the
same Q script, you have to make sure that they all use distinct
names for the mydsp class. With the current Faust version
this can be achieved most easily by just redefining mydsp,
to whatever class name you choose, during the C++ compile
stage, like so:

$ g++ -shared -Dmydsp=myclassname
-o mydsp.so mydsp.cpp

3.2 The Q-Faust module
The compiled DSP is now ready to be used in the Q in-

terpreter. A minimal Q script which just loads the DSP and
assigns it to a global variable looks as follows:

import faust;
def DSP = faust_init "mydsp" 48000;

The first line of the script imports Q’s faust module
which provides the operations to instantiate and operate Faust
DSPs. The faust_init function loads a shared module
(mydsp.so in this example, the .so suffix is supplied auto-
matically) and returns an object of Q type FaustDSP which
can then be used in subsequent operations. The second pa-
rameter of faust_init, 48000 in this example, denotes
the sample rate in Hz. This can be an arbitrary integer value
which is available to the hosted DSP (it is up to the DSP
whether it actually uses this value in some way).

In the following examples we assume that you have ac-
tually loaded the above script in the Q interpreter; the com-
mands below can then be tried at the interpreter’s command
prompt.

The faust_info function can be used to determine
the number of input/output channels as well as the “UI” (a
data structure describing the available control variables) of
the loaded DSP:

==> def (N,M,UI) = faust_info DSP

To actually run the DSP, you’ll need some audio data, en-
coded using 32 bit (i.e., single precision) floating point values
as a byte string. (A byte string is a special kind of data object
which is used in Q to represent arbitrary binary data, such as
a C vector with audio samples in this case.) Suppose you al-
ready have two channels of audio data in the IN1 and IN2
variables and the DSP has 2 input channels, then you would
pass the data through the DSP as follows:

==> faust_compute DSP [IN1,IN2]

This will return another list of byte strings, containing the
32 bit float samples produced by the DSP on its output chan-
nels, being fed with the given input data.

Some DSPs (e.g., synthesizers) don’t actually take any au-
dio input, in this case you just specify the number of samples
to be generated instead:

==> faust_compute DSP 1024

Most DSPs also take additional control input. The control
variables are listed in the UI component of the faust_info
return value. For instance, suppose that there is a “Gain” pa-
rameter listed there, it might look as follows:

==> controls UI!0
hslider <<Ref>> ("Gain",1.0,0.0,10.0,0.1)

The second parameter of the hslider constructor indi-
cates the arguments the control was created with in the .dsp
source file (see the Faust documentation for more details
on this). The first parameter is a Q reference object which

points to the current value of the control variable. The ref-
erence can be extracted from the control description with the
control_ref function and you can then change the value
with Q’s put function before invoking faust_compute
(changes of control variables only take effect between differ-
ent invokations of faust_compute):

==> def GAIN = control_ref (controls UI!0)

==> put GAIN 2.0

3.3 Monophonic synthesizer example
For a very simple, but quite typical and fully functional

example, let us take a look at the monophonic synthesizer
program shown below.

import audio, faust, midi;

def (_,_,_,_,SR) = audio_devices!AUDIO_OUT,
SR = round SR, BUFSZ = 256,
IN = midi_open "Synth",
_ = midi_connect (midi_client_ref

"MidiShare/ALSA Bridge") IN,
OUT = open_audio_stream AUDIO_OUT PA_WRITE

(SR,1,PA_FLOAT32,BUFSZ),
SYNTH = faust_init "synth" SR,
(N,M,UI) = faust_info SYNTH, CTLS = controls UI,
CTLD = dict (zip (map control_label CTLS)

(map control_ref CTLS));

def [FREQ,GAIN,GATE] =
map (CTLD!) ["freq","gain","gate"];

/***/

freq N = 440*2ˆ((N-69)/12);
gain V = V/127;

process (_,_,_,note_on _ N V)
= put FREQ (freq N) ||

put GAIN (gain V) ||
put GATE 1 if V>0;

= put GATE 0 if freq N = get FREQ;

midi_loop = process (midi_get IN) || midi_loop;

audio_loop = write_audio_stream OUT
(faust_compute SYNTH BUFSZ!0) ||
audio_loop;

/***/

def POL = SCHED_RR, PRIO = 10;
realtime = setsched this_thread POL PRIO;

synth = writes "Hit <CR> to stop: " ||
reads || ()

where H1 = thread (realtime || midi_loop),
H2 = thread (realtime || audio_loop);

The program basically consists of two real-time threads:
a control loop which takes MIDI input and changes the synth
DSP’s control variables accordingly, and an audio loop which
just pulls audio data from the DSP at regular intervals and
outputs it to the audio interface. The Faust DSP we use as an
example here is the following simple additive synth:

import("music.lib");

// control variables

vol = nentry("vol", 0.3, 0, 10, 0.01);

attk = nentry("attack", 0.01, 0, 1, 0.001);
decy = nentry("decay", 0.3, 0, 1, 0.001);
sust = nentry("sustain", 0.5, 0, 1, 0.01);
rels = nentry("release", 0.2, 0, 1, 0.001);

freq = nentry("freq", 440, 20, 20000, 1);
gain = nentry("gain", 1, 0, 10, 0.01);
gate = button("gate");

// simple monophonic synth

smooth(c) = *(1-c) : +˜*(c);

voice = gate : adsr(attk, decy, sust, rels) :

*(osci(freq)+0.5*osci(2*freq)+
0.25*osci(3*freq)) :

*(gain : smooth(0.999));

process = vgroup("synth", voice : *(vol));

The header section of the Q script imports the necessary
Q modules and defines some global variables which are used
to access the MIDI input and audio output devices as well
as the Faust DSP. It also extracts the control variables from
the Faust DSP and stores them in a dictionary, so that we can
finally assign the references to a corresponding collection of
global variables. These variables are then used in the control
loop to set the values of the control variables.

The second section of the code contains the definitions
of the control and audio loop functions. It starts out with
two helper functions freq and gain which are used to map
MIDI note numbers and velocities to the corresponding fre-
quency and gain values. The process function (not to be
confused with the process “main” function of the Faust
program!) does the grunt work of translating an incoming
MIDI event to the corresponding control settings. In this sim-
ple example it does nothing more than responding to note on
and off messages (as usual, a note off is just a note on with
velocity 0). The example also illustrates how MIDI messages
are represented as an “algebraic” data type in Q, and how the
note and velocity information is extracted from this data us-
ing “pattern matching.” In the case of a note on message we
change the FREQ and GAIN of the single synth voice accord-
ingly and then set the GATE variable to 1, to indicate that a

note is playing. For a note off message, we simply reset the
GATE variable to 0; in the DSP, this triggers the release phase
of the synth’s ADSR envelop.

The process function is invoked repeatedly during ex-
ecution of midi_loop. The audio_loop function just
keeps reading the audio output of the DSP and sends it to
the audio output stream. The two loops are to be executed
asynchronously, in parallel. (It is worth noting here that the
necessary protection of shared data, i.e., the control variable
references, is done automatically behind the scenes.)

The third section of the script contains the main entry
point, the synth function which kicks off two real-time
threads running the midi_loop and audio_loop func-
tions and then waits for user input. The function returns a
“void” () value as soon as the user hits the carriage return
key. (At this point the two thread handles H1 and H2 are
garbage-collected immediately and the corresponding threads
are thus terminated automatically, so there is no need to ex-
plicitly cancel the threads.)

Of course the above example is rather limited in function-
ality (that shouldn’t come as a big surprise as it is just about
one page of Faust and Q source code). A complete example
of a Faust-based polyphonic software synthesizer with GUI
can be found in the QFSynth application which is available
as a separate package from the Q website.

3.4 Q, Faust and SuperCollider
The Q-Faust interface provides a direct way to embed

Faust DSPs in Q programs, which is useful for testing DSPs
and for simple applications with moderate latency require-
ments. For more elaborate applications it is often convenient
to employ a dedicated software synthesis engine which does
the grunt work of low-latency control data and audio process-
ing. This is where Q’s OSC-based SuperCollider interface
(Gräf 2005) comes in handy. Using SuperCollider’s Faust
plugin interface, described in the next section, Faust DSPs
can also be loaded into the SuperCollider sound server and
are then ready to be operated from Q programs via OSC.

4 Faust and SuperCollider3
SuperCollider3 (McCartney 2002) is a realtime synthesis

and composition framework, divided into a synthesis server
application (scsynth) and an object-oriented realtime lan-
guage (sclang). Any application capable of sending Open-
SoundControl (Wright, Freed, and Momeni 2003) messages
can control scsynth, one notable example being Q (section
3). Accordingly, support for plugins generated by Faust is
divided into an interface to scsynth and sclang, respec-
tively.

4.1 Interface to scsynth
In order to compile a Faust plugin for the SuperCollider3

synthesis architecture, you have to use the corresponding ar-
chitecture file:

$ faust -a supercollider.cpp \
-o noise.cpp noise.dsp

For compiling the plugin on Linux you can use the pro-
vided pkg-config specification, which is installed auto-
matically when you pass DEVELOPMENT=yes to scons
when building SuperCollider:

$ g++ -shared -o noise.so \
‘pkg-config --cflags libscsynth‘ \
noise.cpp

The resulting plugin should be put in a
place where scsynth can find it, e.g. into
˜/share/SuperCollider/Extensions/Faust
on Linux.

Unit-generator plugins in SuperCollider are referenced by
name on the server; the plugin generated by Faust currently
registers itself with the C++ filename sans extension. In fu-
ture versions of Faust the plugin name will be definable in the
process specification itself.

4.2 Interface to sclang
Faust can produce an XML description of a plugin, in-

cluding various meta data and the structural layout of the user
interface.

This information is used by faust2sc in the Faust dis-
tribution to generate a SuperCollider class file, which can be
compiled and subsequently used from within sclang.

For example,

$ faust -xml -o /dev/null noise.dsp
$ faust -xml -o /dev/null karplus.dsp
$ faust2sc -p Faust -o Faust.sc \

noise.dsp.xml karplus.dsp.xml

generates a SuperCollider source file, that, when compiled by
sclang, makes available the respective plugins for use in synth
definitions.

Now copy the source file into sclang’s search path, e.g.
˜/share/SuperCollider/Extensions/Faust on
Linux.

Since scsynth doesn’t provide GUI facilities, UI ele-
ments in Faust specifications are mapped to control rate sig-
nals on the synthesis server. The argument order is deter-
mined by the order of appearance in the (flattened) block di-
agram specification; audio inputs (named in1 . . . inN) are
expected before control inputs. The freeverb example plu-
gin has the following arguments to the ar instance creation
method when used from sclang:

in1 in2 damp(0.5) roomsize(0.5) wet(0.3333)

i.e. first the stereo input pair followed by the control inputs
including default values.

4.3 Examples
Unsurprisingly plugins generated by Faust can be used

just like any other unit generator plugin, although the argu-
ment naming can be a bit verbose, depending on the labels
used in UI definitions.

Assuming the server has been booted, the “noise” exam-
ple found in the distribution can be tested like this:

{ Pan2.ar(
FaustNoise.ar(0.2),
LFTri.kr(0.1) * 0.4)

}.play

A more elaborate example involves the “karplus” example
plugin and shows how to use keyword arguments.

{
FaustKarplus.ar(
play: { |i|
Impulse.kr(
exprand(10/6*(i+1), 20)

* SinOsc.kr(0.1).range(0.3, 1)
)

} ! 6,
duration_samples: LFSaw.kr(0.1)

.range(80, 128),
attenuation: LFPar.kr(0.055, pi/2)

.range(0.1, 0.4)

.squared,
level: 0.05

).clump(2).sum
}.play

Note that the trigger button in the jack-gkt example has
been replaced by a control rate impulse generator connected
to the play input.

Rewriting the monophonic synth example from section
3.3 in SuperCollider is a matter of recompiling the plugin,

$ faust -a supercollider.cpp \
-o synth.cpp synth.dsp

$ g++ -shared -o synth.so \
‘pkg-config --cflags libscsynth‘ \
synth.cpp

$ faust -xml -o /dev/null synth.dsp
$ faust2sc -p Faust -o FaustSynth.sc \

synth.dsp.xml

and installing synth.so and FaustSynth.sc to the ap-
propriate places.

The corresponding SynthDef just wraps the Faust plugin:

(
SynthDef(\faustSynth, {
| trig(0), freq(440), gain(1),
attack(0.01), decay(0.3),
sustain(0.5), release(0.2) |

Out.ar(
0,
FaustSynth.ar(
gate: trig,
freq: freq,
gain: gain,
attack: attack,
decay: decay,
sustain: sustain,
release: release

)
)

}, [\tr]).send(s)
)

and can now be used with SuperCollider’s pattern system:

(
TempoClock.default.tempo_(2);
x = Synth(\faustSynth);
p = Pbind(
\instrument, \faustSynth,
\trig, 1,
\sustain, 0.2,
\decay, 0.1,
\scale, #[0, 3, 5, 7, 10],
\release, Pseq(
[Pgeom(0.2, 1.5, 4),
4,
Pgeom(0.2, 0.5, 4)],
inf

),
\dur, Pseq(
[Pn(1/4, 4),
15.5/4,
Pn(1/8, 4)],
inf

),
\degree, Pseq(
[1, 2, 3, 4, 5, 2, 3, 4, 5].mirror,
inf

)
).play(
protoEvent: (
type: \set,
args: [\trig, \freq, \release]

)
)
)

5 Conclusion
Existing functional programming environments have tra-

ditionally been focused on non real-time applications such
as artificial intelligence, programming language compilers
and interpreters, and theorem provers. While multimedia has
been recognized as one of the key areas which could benefit
from functional programming techniques (Hudak 2000), the
available tools are not capable of supporting real-time execu-
tion with low latency requirements. This is unfortunate since
real time is where the real fun is in multimedia applications.

The Faust programming language changes this situation.
You no longer have to program your basic DSP modules in C
or C++, which is a tedious and error-prone task. Faust allows
you to develop DSPs in a high-level functional programming
language which can compete with, or even surpass the effi-
ciency of carefully hand-coded C routines. The SuperCollider
Faust plugin interface lets you execute these components in a
state-of-the-art synthesis engine. Moreover, using Q’s Faust
and SuperCollider interfaces you can also program the real-
time control of multimedia applications in a modern-style
functional programming language. Together, Faust, Q and
SuperCollider thus provide an advanced toolset for program-
ming DSP and computer music applications which should be
useful both for practical application development and educa-
tional purposes.

The software discussed in this paper is all available from SourceForge,
see: http://faudiostream.sf.net, http://q-lang.sf.net,
http://supercollider.sf.net.

References
Gräf, A. (2005). Q: A functional programming language for

multimedia applications. In Proceedings of the 3rd Interna-
tional Linux Audio Conference (LAC05), Karlsruhe, pp. 21–
28. ZKM.

Hudak, P. (2000). The Haskell School of Expression: Learning
Functional Programming Through Multimedia. Cambridge
University Press.

Karplus, K. and A. Strong (1983). Digital synthesis of plucked-
string and drum timbres. Computer Music Journal 7(2), 43–
55.

McCartney, J. (2002). Rethinking the computer music language:
SuperCollider. Computer Music Journal 26(4), 61–68. See
also http://supercollider.sourceforge.net.

Orlarey, Y., D. Fober, and S. Letz (2004). Syntactical and seman-
tical aspects of Faust. Soft Computing 8(9), 623–632.

Wright, M., A. Freed, and A. Momeni (2003). OpenSound Con-
trol: State of the art 2003. In Proceedings of the Conference
on New Interfaces for Musical Expression (NIME-03), Mon-
treal, pp. 153–159.

