

Application Note AN3101-06: Four Channel 1-Bit D/A by Pete Celi

Introduction

This paper describes an unconventional application for the DSP-1K. By directly writing to the serial output lines every 64 ticks, a 16X over-sampling 1-Bit D/A converter may be realized. The serial output pins provide analog information with a simple RC filter. The process involves calculating an interpolating FIR filter, then feeding those outputs into a Delta-Sigma modulator. Four channels may be implemented by using all four serial output pins. For this application, emphasis is on utility and not high performance.

Proposed Specs:

SNR: 54dB BW: 15KHz Passband Ripple: +/-.3dB Stopband Rejection: -25dB Over-sample Ratio: 16:1

<u>Algorithm</u>

Interpolation Filter

A 32-tap 1:8 interpolation filter is used to reduce the images present from the incoming 48KHz samples by 25dB. The 1:8 ratio means the filter operates as follows:

FILTER	OUTPUT	0	=	IN0*KO	+	IN1*K8	+	IN2*K16	+	IN3*K24
FILTER	OUTPUT	1	=	IN0*K1	+	IN1*K9	+	IN2*K17	+	IN3*K25
FILTER	OUTPUT	2	=	IN0*K2	+	IN1*K10	+	IN2*K18	+	IN3*K26
FILTER	OUTPUT	3	=	IN0*K3	+	IN1*K11	+	IN2*K19	+	IN3*K27
FILTER	OUTPUT	4	=	IN0*K4	+	IN1*K12	+	IN2*K20	+	IN3*K28
FILTER	OUTPUT	5	=	IN0*K5	+	IN1*K13	+	IN2*K21	+	IN3*K29
FILTER	OUTPUT	6	=	IN0*K6	+	IN1*K14	+	IN2*K22	+	IN3*K30
FILTER	OUTPUT	7	=	IN0*K7	+	IN1*K15	+	IN2*K23	+	IN3*K31

INO = most recently read 48KHz input sample

- IN1 = input sample from previous sample period
- $\ensuremath{\operatorname{IN2}}$ = input sample from two sample periods previous
- IN3 = input sample from three sample periods previous

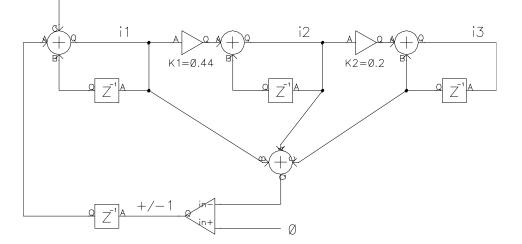
Note: Each input is scaled by -2.0 as it is read in to preserve proper polarity and signal level for modulator algorithm.

The auto-decrementing address feature is on to allow easy FIR calculations for the 1:8 interpolator. The coefficients are as follows:

к0	=	3f7de4	=	K31
K1	=	3fc421	=	K30
К2	=	3fbfda	=	K29
К3	=	3fc364	=	K28
К4	=	3fd095	=	K27
К5	=	3fe88f	=	K26
Кб	=	b87	=	K25
К7	=	38c4	=	K24
K8	=	беа5	=	K23
К9	=	aa85	=	K22
K10	=	e8b0	=	K21
K11	=	12543	=	K20
K12	=	15c44	=	K19
K13	=	1895e	=	K18
K14	=	1a996	=	K17
K15	=	1ba4b	=	K16

Modulator

IN


The interpolator filter outputs are converted into a 1-bit signal by a 3-stage Delta Sigma modulator. The modulator runs at 2x speed relative to the interpolator filter outputs, so the over-sample ratio is $2 \times 8=16$.

Modulator equations:

K1 = 0.44, K2 = 0.2 I1 = In + DAC + I1 I2 = K1*I1 + I2 I3 = K2*I2 + I3 Sum = I1 + I2 + I3If (Sum>0) DAC = -1 Else DAC = 1

(max = +/-0.5)

3rd Order Modulator

11, I2, I3, and DAC are stored in the multi-purpose registers.

Source Code

In order for the 1-bit outputs to be interpreted correctly, each channel must be written to in exactly 64 tick increments. This may be accomplished by doing the first two channels of interpolation filter, followed by all four channels of the modulator routine, followed by the last two channels of interpolation filter, and then all four channels of the modulator routine again. This allows for exact intervals for writing to the four 1-bit outputs, and has the modulator running twice as fast as the interpolator.

The following shows a section of code to produce one interpolator filter output per channel and two 1-bit modulator outputs per channel.

;1K code for 4 channel 1-Bit D/A

;Inte	rp CH0 out0				
CM	0x380000	0x410 ;read in IN0*(-2) from CH0			
SCA	0x3F7DE4	0x000 ; store input, A = IN0*K0			
CMA	0x006EA5	0×001 ; A = A + IN1*K1			
	0x006EA5 0x01BA4B	0×002 ; A = A + IN2*K2			
CMA	0x0038C4	0×003 ; A = A + IN3*K3			
SCA	0x00000	0x100 ; store output IntCH0 out0			
;Interp CH1 out0					
CM	0x380000	0x411 ; read in IN0*(-2) from CH1			
SCA	0x3F7DE4	0x010 ; same routine as CH0			
CMA	0x006EA5	0x011			
CMA	0x01BA4B 0x0038C4	0x012			
		0x013			
SCA	0x00000	0x110 ; store output IntCH1 out0			
;Modu	lator 0				
1MC	0x3C0000	0x400; A = DAC - 1 (sets A to +/-1)			
CMA	0x040000 0x040000	0×100 ; A = A + In (In = IntCH0 out0)			
		0×401 ; A = A + I1			
SCA	0x01CCCC	0x401; store new I1, A = I1*K1			
CMA	0×040000	0x402; A = A + I2			
SXCA	0x00CCCC	0x402 ; store new I2 into [M] and B			
		i A = I2*K2			
	0x040000	0x403; A = A + I3			
	0x040000	0x403; store new I3, A = I3 + I2			
	0x040000	0×401 ; A = A + I1 = I3 + I2 + I1			
	N 0x2000000	; if A<0, A=2, else A=0			
	0x3C0000	0x400; store A, A = A - 1, (sets A to +/-1)			
		; if A>=0, A = all bits high			
SCA	0x000000	0x421 ; write A to output pin0, clear A			
;Modu	lator 1, same idea	as Modulator O			
	0x3C0000	0x404			
	0x040000	0x110 ; input comes from IntCH1 out0			
CMA	0x040000 0x01CCCC	0x405			
		0x405			
	0x040000	0x406			
SXCA	0x00CCCC	0x406			
CMA	0×040000	0x407			
	0×040000	0x407			
CMA	0x040000	0x405			
	N 0x2000000				
SIAC	0x3C0000	0x404			
	!N Oxfffffff				
SCA	0x000000	0x422 ; write to output pin1			

20		
	;Modulator 2	
(\bigcirc)	1MC 0x3C0000	0x408
	CMA 0x040000	0x121 ; input comes from IntCH2 out7
	CMA 0x040000	0x409
7	SCA 0x01CCCC	0x409
\bigcirc	CMA 0x040000	0x40A
	SXCA 0x00CCCC	0x40A
	CMA 0x040000	0x40B
\bigcirc	SCBA 0x040000	0x40B
6-0	CMA 0x040000	0x409
	C N 0x2000000	0.400
	SIAC 0x3C0000	0x408
	C !N 0xFFFFFFF SCA 0x000000	0x424 : write to output pip?
	SCA UXUUUUUU	0x424 ; write to output pin2
	;Modulator 3	
	1MC 0x3C0000	0x40C
	CMA 0x040000	0x131 ; input comes from IntCH3 out7
	CMA 0x040000	0x40D
	SCA 0x01CCCC	0x40D
\bigcirc	CMA 0x040000	0x40E
	SXCA 0x00CCCC CMA 0x040000	0x40E 0x40F
	SCBA 0x040000	0x40F
	CMA 0x040000	0x40D
	C N 0x2000000	01105
	S1AC 0x3C0000	0x40C
	C !N 0xfffffff	
	SCA 0x00000	0x428 ; write to output pin3
	Intern CH2 out0	
	;Interp CH2 out0 CM 0x380000	0x412 ; read IN0*(-2) from CH2
	SCA 0x3F7DE4	0x020
(aB)	CMA 0x006EA5	0x021
	CMA 0x01BA4B	0x022
	CMA 0x0038C4	0x023
\leq	SCA 0x00000	0x120 ; store output IntCH2 out0
	;Interp CH3 out0	
(SO)	CM 0x380000	0x413 ; read IN0*(-2) from CH3
	SCA 0x3F7DE4	0x030
	CMA 0x006EA5	0x031
(\mathcal{L})	CMA 0x01BA4B	0x032
	CMA 0x0038C4	0x033
<u></u>	SCA 0x00000	0x130 ; store output IntCH3 out0
	;Modulator 0	
	1MC 0x3C0000	0x400
\bigcirc	CMA 0x040000	0x100 ; input from IntCH0 out0
	CMA 0x040000	0x401
	SCA 0x01CCCC	0x401
	CMA 0x040000	0x402
	SXCA 0x00CCCC	0x402
	CMA 0x040000	0x403
	SCBA 0x040000	0x403
	CMA 0x040000	0x401
	C N 0x2000000	0 400
	SIAC 0x3C0000	0x400
	C !N 0xFFFFFFF SCA 0x000000	0x421
	SCA UXUUUUUU	VAIAT
\mathcal{C}		
		A wavefront

;Modulator 1 1 MC 0x3C0000 0x404 CMA 0x040000 0x110 ; input from IntCH1 out0 CMA 0x040000 0x405 SCA 0x01CCCC 0x405 0x406 0x040000 CMA SXCA 0x00CCCC 0x406 0x040000 0x407 CMA 0×040000 0×407 SCBA CMA 0x040000 0x405 C N 0x200000 S1AC 0x3C0000 0x404 С !N 0xfffffff SCA 0x000000 0x422 ;Modulator 2 0x408 1MC 0x3C0000 CMA 0x040000 0x120; input from IntCH2 out0 0x040000 0x409 CMA SCA 0x01CCCC 0x409 CMA 0x0400000x40A SXCA 0x00CCCC 0x40A CMA 0x040000 0x40B SCBA 0x040000 0x40B CMA 0x040000 0x409 С N 0x2000000 S1AC 0x3C0000 0x408 С !N 0xfffffff SCA 0x000000 0x424 ;Modulator 3 0x40C 1MC 0x3C0000 0x040000 0x130 ; input from IntCH3 out0 CMA 0x040000 0x40D CMA 0x40D SCA 0x01CCCC 0x040000 0x40E CMA 0x00CCCC 0x40E SXCA 0x040000CMA 0x40F SCBA 0x040000 0x40F 0x040000 0x40D CMA С N 0x2000000 SIAC 0x3C0000 0x40C C !N 0xfffffff 0x000000 SCA 0x428

This section of code is essentially repeated 8 times with new coefficients for the interpolator in each section.

Conclusion

This approach may be used to create a higher performance two-channel system. The key to enhancing noise performance is to use a higher order modulator. Increasing the number of coefficients in the interpolation filter will improve pass-band ripple and image rejection specs. An external return-to-zero (RTZ) circuit should be employed to condition the 1-bit output to obtain predicted results when trying to obtain higher performance.

NOTICE

Wavefront Semiconductor reserves the right to make changes to their products or to discontinue any product or service without notice. All products are sold subject to terms and conditions of sale supplied at the time of order acknowledgement. Wavefront Semiconductor assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Information contained herein is only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked, no responsibility is assumed for inaccuracies.

Wavefront Semiconductor products are not designed for use in applications which involve potential risks of death, personal injury, or severe property or environmental damage or life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness.

All trademarks and registered trademarks are property of their respective owners.

Contact Information:

Wavefront Semiconductor 200 Scenic View Drive Cumberland, RI 02864 U.S.A. Tel: +1 401 658-3670 Fax: +1 401 658-3680 On the web at www.wavefrontsemi.com Email: info@wavefrontsemi.com

Copyright © 2005 Wavefront Semiconductor

Application note revised March, 2005

Reproduction, in part or in whole, without the prior written consent of Wavefront Semiconductor is prohibited.

