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Application Note AN3101-12: Pseudorandom Numbers 

by Shultz Wang 
 
 

Introduction 

In many applications, a source of random numbers is useful for processing purposes or as 
inputs.  A white noise or pink noise source, for example, requires such a source.  Since the  
DSP-1K is a digital machine, it cannot generate a purely random output.  There are however 
several methods of calculating a value with a sufficiently random distribution such that it may 
be used to approximate a random process. 
 
 

Algorithm 

A common way to code a pseudorandom number generator (PRNG) is with a linear congruential 
generator, which follows the formula: 
 
 y[n] = (a*y[n-1] + c) modulo m. 
 
Choosing the appropriate a, c, and m values is an art in itself.  However, many references are 
available with tried and true choices.  In this application, m is chosen to be 216 to align with bit 
boundaries, a = 25173 and c = 13849 are good values to use with the selected m. 
 
The code can take advantage of the non-saturation-limiting feature of integer operations in the 
DSP-1K for a modulo operation.  However, this limits the number generated to 16-bits, giving a 
cycle time of 216/48000Hz = 1.37 seconds before bits are repeated.  For higher bitwidths, the 
modulo operation must be explicitly coded. 
 
 
A second way to code a PRNG is a linear feedback shift register (LFSR), a row of serially 
connected registers where the intermediate values are manipulated in a modulo-2 summation 
fashion to generate the next state.  The implementation discusses in this application note uses 
the Fibonacci method, where the intermediate values are modulo-2 summed to generate the next 
input into the shift register. 
 

 
 
Due to the lack of an XOR function in the DSP-1K, the modulo-2 summation is achieved by 
using a true summation with masking.  A 25-bit LFSR is implemented in the example source 
code, giving a cycle time of 225/48000Hz = 699 seconds before bits are repeated.  The LFSR 
generates one new bit every time it is executed, so depending on the number of pseudorandom 
bits needed in the application, the code may be duplicated multiple times, with the cycle time 
reduced accordingly. 
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In order to initiate the LFSR, the register where it is stored may need to be written with a seed 
value.  If the logic performed in the modulo-2 math is equivalent to an XOR gate, then the LFSR 
must have a non-zero value in order to run, thus it requires a seed value which is not all 0’s.  If 
the logic performed in the modulo-2 math is equivalent to an XNOR gate, then the LFSR must 
have a non-max value in order to run, thus it requires a seed value which is not all 1’s. 
 
 
Application: Colored Noise 

White noise (also known as Johnson noise, thermal noise, or shot noise) is defined as noise with 
equal energy density at every frequency, and can be used in frequency analysis of audio 
equipment, or for noise masking.  The PRNGs generate a bitstream with a flat power spectrum 
distribution, and thus are perfect for white noise sources without further modification. 
 
Pink noise (also known as 1/f noise, or flicker noise) is noise which has equal energy per octave, 
and thus falls off at a rate of -10dB per decade.  This energy distribution is closer to what is 
found in nature than that of white noise, and is used for testing of speaker systems or room 
acoustics.  With a filter to convert the spectrum of a white noise source to a 1/f distribution, a 
pink noise source can be created.  Since a -10dB per decade filter has a gentler rolloff than even 
a single-pole filter, three filter are summed in this application note to approximate the response. 
 
Brown noise is so named for the noise equivalent of Brownian motion, where the energy density 
falls off at a rate inversely proportional to the square of the frequency, or -20dB per decade.  This 
is achieved by simply passing a white noise source through a single-pole filter, with the brown 
noise characteristics in effect above the corner frequency of the filter.  Using a single-pole filter 
equation of: 
 

 y[n] = a0*x[n] + b1*y[n-1], where a0 = 1 – e-2πfc/fs, 

      b1 = e-2πfc/fs, 
      fc = corner frequency,  
      fs = sampling frequency, 
 
the active range of brown noise may be selected via the fc value.  Setting fc = 1kHz, with  
fs = 48kHz, a0 = 0.122694, b1 = 0.877306. 
 
 
Application: Dither 

Dithering is another application which requires pseudorandom numbers.  Oftentimes the 
bitwidth of an output datastream has fewer bits than the bitwidth internal to the DSP, thus it is 
necessary to discard the extra bits through truncation, such as when the 24 bits of output from 
the DSP-1K has to be truncated to 16 bits in a particular application.  This causes spectral and 
power correlations between the original signal and the quantization error.  By adding a low 
amplitude white noise value to the original signal, the perceived stairstepping of the output can 
be minimized, and signals buried in the removed bits may be boosted to audible levels, at the 
expense of higher noise levels. 
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The most basic form of dithering is addition of a white 
noise source with an amplitude equal to the lowest 

unquantized bit to the pre-quantized signal, ±0.5LSB 
of the output.  This is called rectangular dither due 
to its uniform probability distribution function, and 
has a noise penalty of 3dB. 
 

 

 

To further decrease the modulation of the noise 
power by the input signal, a triangular dither 
may be used.  This involves the combining of two 
dither sources, each having an amplitude of 

±0.5LSB of the output, thus giving a triangular 

probability distribution function at ±1LSB of the 
output, and a noise penalty of 4.77dB.  The 

combination may be done by summing two non-correlated noise sources, or by differencing two 
successive values from one noise source, which is in essence a 2-tap finite impulse response 
highpass filter.  Since dither noise and quantization noise are additive, reducing audible noise is 
desirable.  This filtering shifts the noise power towards higher frequencies, with a 50% reduction 
(3dB) in power at very low frequencies, and a 50% boost (1.76dB) at Nyquist.  However, the white 
noise power spectrum does get replaced with a blue noise spectrum (rising energy with 
increasing frequency, the opposite of pink or brown noise), which some may find more 
objectionable. 
 
 
The idea of filtering the noise 
to change its power spectrum 
can be taken one step further 
by applying noise shaping, 
which is the technique of using 
the negative feedback of the 
quantization error through a 
filter to shift most of the noise 
power to the higher frequencies, 
and thus take advantage of 
human psychoacoustic characteristics and reduce the apparent noise power levels.  The 
effectiveness and resulting spectrum is highly dependent on the filter used.  This application 
note presents several possibilities: a simple 1-stage delay: 

H(z-1) = z-1, 

a second order FIR filter: 

H(z-1) = -2*z-1 + z-2, 

and a eighth order Parks-McClellan optimized FIR filter: 

fc = 18kHz, transition band = 1.92kHz, 

H(z-1) = 0.0399983 – 0.0786185*z-1 + 0.1268321*z-2 – 0.1652212*z-3 + 0.1798762*z-4 

– 0.1652212*z-5 + 0.1268321*z-6 – 0.0786185*z-7+ 0.0399983*z-8. 

A more sophisticated filter can designed with an inverse A-weighted response in the lower 
frequencies, in order to more fully suppress audible noise levels. 
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Source Code 
 
; File: AN3101-12LCG.ASM 
; Description: Pseudorandom Numbers: Linear Congrue ntial Generator 
; Author: Shultz Wang 
; Copyright: 2005 Wavefront Semiconductor 
 
; DIRF: Pseudorandom number 'rnd' storage location 
; y[n] = (a*y[n-1] + c) modulo m, a = 25173, c = 13 849, m = 2^16 
 
LCA 0 DIRF  ; Load y[n-1] into B 
DAC 0 $189540 ; Load a into A 
MLTB    ; a*y[n-1] 
XCM 0 DIRF  ; B=a*y[n-1] 
DAC 0 $D8640  ; Load c into A 
ADDB    ; a*y[n-1] + c 
SCA 1.0 DIRF  ; Write new rnd 
 
CAD 0.0625 0.0  ; Scale +/-8.0 number to +/-0.5 
SCA 1.0 OUT1  ; Output channel 1: White noise 
 
 
 
 
; File: AN3101-12LFSR.ASM 
; Description: Pseudorandom Numbers: Linear Feedbac k Shift Register 
; Author: Shultz Wang 
; Copyright: 2005 Wavefront Semiconductor 
 
; DIRF: Pseudorandom number ‘rnd’ storage location 
MEM tmp 1 ; Dummy write location 
 
;::::::: LFSR :::::::: 
CM $000001  DIRF ; Right-shift rnd 18 bits, bit 21 @ bit 3, bit 24 @ bit 6 
SXCA $001000  tmp ; Right-shift rnd 18+6=24 bits, b it 24 @ bit 0 
   ; B = Right-shifted 18 bit rnd 
SCBA 0.125 tmp ; Right-shift rnd 18+3=21 bits, bit 21 @ bit 0 
   ; (Bit 21 @ bit 0) + (bit 24 @ bit 0) = bit 21 X OR bit 24 @ bit 0 
1AC $1  ; (Bit 21 XOR bit 24 @ bit 0) + 1 = bit 21 XNOR bit 24 @ bit 0 
   ;   ** This instruction changes the requirement of the seed value 
   ;   from a non-zero value to a value that is not  all 1’s 
ANDC $1  ; Screen out bit 0 
CMA 2.0 DIRF ; Put new bit 0 into rnd 
ANDC $1FFFFFF ; Remove bit 26 from rnd 
SCA 1.0 DIRF ; Write new rnd 
  ;* Repeat above code by the number of bits needed  in pseudorandom number, up to 25x 
 
;:: Sign extension ::: 
ANDC $1000000 ; Isolate bit 25 
SKIP Z fi ; If (bit 25 != 0) 
CM -1.0 DIRF ;   2's complement rnd 
ANDC $1FFFFFF ;   Remove sign bits 
CAD -1.0 0.0 ;   2's complement (2's complement rnd ) = inverted sign bits 
SKIP  esle ; Else 
fi: 
CM 1.0 DIRF ;   Load rnd 
esle: 
CAD 0.25 0.0 ; Scale 25 bit number to 23 bit 
 
SCA 1.0 OUT1 ; Output channel 1: White noise 
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For pink noise, replace the last line of the PRNG code with the following filter. 
 
; DIRC: y0[n] = a00*x[n] + b10*y0[n-1], a00 = 0.099 0460, b10 = 0.99765 
; DIRD: y1[n] = a01*x[n] + b11*y1[n-1], a01 = 0.296 5164, b11 = 0.96300 
; DIRE: y2[n] = a02*x[n] + b12*y2[n-1], a02 = 1.052 6913, b12 = 0.57000 
; Pink = y0[n] + y1[n] + y2[n] + g*x[n], g = 0.1848  
SXCA 0.0990460 tmp ; a00*x[n], B=white 
CMA 0.99765 DIRC ; a00*x[n] + b10*y0[n-1] 
SCB 0.2965164 DIRC ; a01*x[n], y0[n] = a00*x[n] + b 10*y0[n-1] 
CMA 0.96300 DIRD ; a01*x[n] + b11*y1[n-1] 
SCB 1.0526913 DIRD ; a02*x[n], y1[n] = a01*x[n] + b 11*y1[n-1] 
CMA 0.57000 DIRE ; a02*x[n] + b12*y2[n-1] 
SCB 0.1848  DIRE ; g*x[n], y2[n] = a02*x[n] + b12*y 2[n-1] 
CMA 1.0 DIRE ; y2[n] + g*x[n] 
CMA 1.0 DIRD ; y1[n] + y2[n] + g*x[n] 
CMA 1.0 DIRC ; Pink = y0[n] + y1[n] + y2[n] + g*x[n ] 
 
SCA 1.0 OUT1 ; Output channel 1: Pink noise 
 
 
 
 

For brown noise, replace the last line of the PRNG code with the following filter. 
 
; DIRB: LPF 
; Brown = y[n] = a0*x[n] + b1*y[n-1] 
;    For fc = 1kHz, fs = 48kHz: a0=0.122694, y1[n]= 0.877306 
CAD $7DA4 0.0 ; a0*x[n] 
CMA $3825C DIRB ; a0*x[n] + b1*y[n-1] 
SCA 1.0 DIRB ; Save new y[n] 
 
SCA 1.0 OUT1 ; Output channel 1: Brown noise 
 
 
 
 

For rectangular dither, replace the last line of the PRNG code with the following code. 
 
; Rectangular dither 
CAD $4 0.0  ; Scale number to below 16th fractional  bit 
CMA 1.0 IN1  ; Input plus dither 
ANDC $FFFFF00  ; Truncate to 16 bit output 
 
SCA 1.0 OUT1  ; Output channel 1: Rectangular dithe red input 
 
 
 
 

For triangular dither, store a copy of the PRN from the last tick in register B, and replace the 
last line of the PRNG code with the following code. 
 
; Rectangular dither 
; Triangular dither 
MEM tmp 1  ; Dummy write location 
SCBA -0.0625 tmp ; y[n] - y[n-1] 
CAD $8 0.0  ; Scale number to below 15th fractional  bit 
CMA 1.0 IN1  ; Input plus dither 
ANDC $FFFFF00  ; Truncate to 16 bit output 
 
SCA 1.0 OUT1  ; Output channel 1: Triangular dither ed input 
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For dither with noise shaping, replace the last line of the PRNG code with the following code. 
 
; Dither with noise shaping 
MEM FIR $n  ; n-tap FIR filter buffer, replace with  actual tap count 
MEM Stor 1  ; Pre-dither storage 
 
CAD $8 0.0  ; Scale number to below 15th fractional  bit 

... Filter code to be placed here ... 

CAM -1.0 IN1  ; Input minus filtered error 
SCAB 1.0 Stor  ; Add dither, Stor = Pre-dither 
ANDC $FFFFF00  ; Truncate to 16 bit output 
 
SCA 1.0 OUT1  ; Output channel 1: Noise shaped dith ered input 
 
CMA -1.0 Stor  ; Post-dither - Pre-dither = Error s ignal 
SCA 1.0 FIR  ; Put error signal into FIR filter buf fer 
 
 
 
 

The first order filter, consisting of a single delay, is only one line of code. 
 
XCM 1.0 FIR+1  ; 1st tap times coeff, B = dither 
 
 
 
 

The second order filter is as follows. 
 
XCM -2.0 FIR+1  ; 1st tap times coeff, B = dither 
CMA 1.0 FIR+2  ; 2nd tap times coeff 
 
 
 
 

The eighth order filter is as follows. 
 
XCM -0.0786185 FIR+1 ; 1st tap times coeff, B = dit her 
CMA 0.1268321 FIR+2 ; 2nd tap times coeff 
CMA -0.1652212 FIR+3 ; 3rd tap times coeff 
CMA 0.1798762 FIR+4 ; 4th tap times coeff 
CMA -0.1652212 FIR+5 ; 5th tap times coeff 
CMA 0.1268321 FIR+6 ; 6th tap times coeff 
CMA -0.0786185 FIR+7 ; 7th tap times coeff 
CMA 0.0399983 FIR+8 ; 8th tap times coeff 
1AC 0.0399983  ; FIR offset 
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NOTICE 

Wavefront Semiconductor reserves the right to make changes to their products 
or to discontinue any product or service without notice.  All products are sold 
subject to terms and conditions of sale supplied at the time of order 
acknowledgement.  Wavefront Semiconductor assumes no responsibility for the 
use of any circuits described herein, conveys no license under any patent or 
other right, and makes no representation that the circuits are free of patent 
infringement.  Information contained herein is only for illustration purposes and 
may vary depending upon a user’s specific application.  While the information in 
this publication has been carefully checked, no responsibility is assumed for 
inaccuracies. 

Wavefront Semiconductor products are not designed for use in applications 
which involve potential risks of death, personal injury, or severe property or 
environmental damage or life support applications where the failure or 
malfunction of the product can reasonably be expected to cause failure of the life 
support system or to significantly affect its safety or effectiveness. 

All trademarks and registered trademarks are property of their respective owners. 
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