

Application Note AN3101-05: Compressor and Expander for 1KM by Shultz Wang

This application note provides the algorithm for a basic compression/expansion curve.

In log/log space, a straight line is described by the equation $y=Ax^B$. By taking the log of the equation, its behavior may be examined:

 $\log(y) = \log(A) + B \log(x).$

It can be seen that log(A) controls the y-intercept of the line, and B controls the slope of the line.

This equation will now be used to construct the complete compander curve. The curve is made up of three segments: the upper compression segment $y=A_cx^{Bc}$, the middle passthrou segment y=x, and the lower expansion segment $y=A_ex^{Be}$.

For compression, a decrease in slope is desired for higher ratios, so choose $B_c=1/R_c$. To solve for A_c , note that at the threshold the two lines meet, so

$$y(T_c) = T_c = A_c T_c^{(1/Rc)} \implies A_c = T_c^{(1-1/Rc)}.$$

Therefore

$$y = T_c^{(1-1/Rc)} x^{(1/Rc)}$$

This is equal to the input times the compression gain G_c , therefore the gain is $G_c \mathbf{x} = T_c^{(1-1/Rc)} \mathbf{x}^{(1/Rc)}$

$$T_{c} \mathbf{X} = T_{c}^{(1-1/Rc)} \mathbf{X}^{(1/Rc)}$$

$$T_{c} = (T_{c}/x)^{(1-1/Rc)}.$$

After a similar derivation, the expansion gain G_e can be derived to be $G_e = (T_e/x)^{(1\text{-Re})}.$

The basic smoothing algorithm, applied to the calculated gain coefficients generates the attack and release times.

Current = Current + τ (Target - Current).

The following table can serve as a guide for selecting the proper fractional value for good attack and release time constants (sampling period = 1/48kHz). Common attack times are 1ms to 100ms. Common release times are 0.5s to 3s.

Shift	Fractional	Hex	$\tau = -(Sample Pd)/ln(1-Fractional)$
1 bit	1/2	\$020000	0.030ms
2 bits	1/4	\$010000	0.072ms
3 bits	1/8	\$008000	0.156ms
4 bits	1/16	\$004000	0.323ms
5 bits	1/32	\$002000	0.656ms
6 bits	1/64	\$001000	1.323ms
7 bits	1/128	\$000800	2.656ms
8 bits	1/256	\$000400	5.323ms
9 bits	1/512	\$000200	10.656ms
10 bits	1/1024	\$000100	21.323ms
11 bits	1/2048	\$000080	42.656ms
12 bits	1/4096	\$000040	85.323ms
13 bits	1/8192	\$000020	0.170s
14 bits	1/16384	\$000010	0.341s
15 bits	1/32768	\$00008	0.682s
16 bits	1/65536	\$000004	1.365s
17 bits	1/131072	\$000002	2.731s
18 bits	1/262144	\$000001	5.461s

AN3101-05-0702

Alesis Semiconductor 05-0702 12555 Jefferson Blvd., Suite 285 Los Angeles, CA 90066 Phone (310) 301-0780 Fax (310) 306-1551 www.alesis-semi.com

J

)

1K code:

First calculate or select the following values for each channel (the x subscript in the names means it refers to both compression (subscript c) and expansion (subscript e)).

T_x (Threshold) G_x (Gain) Address (non-rotating) R_x (Ratio) τ_{xa} (Attack fractional) τ_{xr} (Release fractional) G (Final gain)

The compression algorithm is • Threshold detection

; Thre	eshold detection	n		
CM	\$080000	\$41#	;	Read Input channel $\#$ into A, scaled to +1 \rightarrow -1
SKIP	! N	\$1	;	Skip multiply by -1 if data positive
CM	\$380000	\$41#	;	Read -Input into A, scaled to +1 $ ightarrow$ -1
X1AC	\$(-T _c)		;	Store Input into B, subtract T _c from Input
SKIP	Ν	\$9	;	Skip G_c attack calculations if Input < T_c
; Atta	ck conditional			
LOGB			;	LOG16(Input)
DAC	\$£00	\$(LOG1	6	(T_c) ; LOG16 (T_c) -LOG16 $(Input)$
CAD	\$(1-1/R _c)	\$0	;	$(1-1/R_c)(LOG16(T_c)-LOG16(Input))$
X1AC	\$0		;	A->B
EXPB			;	$EXP16((1-1/R_c)(LOG16(T_c)-LOG16(Input)))$
CMA	\$3c0000	G_cA	;	$(-1)G_{c}+EXP16((1-1/R_{c})(LOG16(T_{c})-LOG16(Input)))$
CAM	(τ_{ca})	G_cA	;	$G_c + \tau_{ca}(EXP16((1-1/R_c)(LOG16(T_c)-LOG16(Input)))-G_c)$
SXCA	\$0	G_cA	;	Write new attack $G_{\rm c},$ store $G_{\rm c}$ in B.
SKIP		\$3	;	Skip G_c release calculations since $ Input \ge T_c$
; Rele	ase conditiona	1		
1MC	\$3c0000	G_cA	;	(G _c -1)
CAM	$(-\tau_{cr})$	G_cA	;	$G_{c} - \tau_{cr} (G_{c} - 1) = G_{c} + \tau_{cr} (1 - G_{c})$
SXCA	\$O	G_cA	;	Write new release $G_{\rm c},$ store $G_{\rm c}$ in B.
; G _c iı	n A and B			

For expansion, replace all compression constants with expansion constants, replace $(1-1/R_c)$ with $(1-R_e)$, replace the G_c address with the G_e address, and replace the second skip instruction's condition with !N.

```
; Skip G_{e} attack calculations if |\,Input\,|\,>\,T_{e}
SKIP
        ! N
                       $8
```

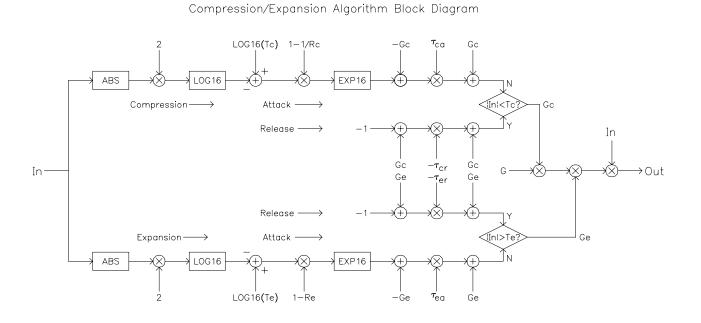
Multiply the input by the gains and write to output.

CM	\$(G)	\$G _c A	;	Read G _c , multiplied by fi	nal gain
AMC	\$0	\$G _e A	;	G _c *G _e *G	
AMC	\$0	\$41#	;	Input=Input*G _c *G _e *G	
SCA	\$0	\$41#	;	Write companded input to	chan #

Note that gain reduction metering may be done by reading the gain value and subtracting it from unity. To output the metering to a channel, use the following code.

CM	\$3c0000	\$G _x A	;	Read -	G _x						
1AC	\$040000		;	$1-G_x$							
SCA	\$0	\$4##	;	Write	gain	reduction	meter	value	to	address	##

AN3101-05-0702


Alesis Semiconductor 12555 Jefferson Blvd., Suite 285 Los Angeles, CA 90066 Phone (310) 301-0780 Fax (310) 306-1551 www.alesis-semi.com

- 2 -

Note that since compression and expansion each need a register to store the current gain, to have both on every channel will require 16 registers.

Note that in this implementation only the threshold parameter requires two instruction alterations, all others require only one.

AN3101-05

Sample compander:

; Compressor: Threshold = -6dB; Ratio = 4

```
; Attack \tau = 0.323ms; Release \tau = 0.682s
```

,		s, 10010 as	
CM SKIP	\$080000 !N		Read Input channel 0 into A, scaled to +1 \rightarrow -1 Skip multiply by -1 if data positive
CM	\$380000	\$410	Read -Input into A, scaled to +1 $ ightarrow$ -1
X1AC	\$£800000		Store Input into B, subtract Tc from Input
SKIP	Ν	\$9	Skip G $_{\rm c}$ attack calculations if $ $ Input $ $ < T $_{\rm c}$
LOGB			LOG16(Input)
DAC	\$£00	\$3£0000	; $LOG16(T_c)-LOG16(Input)$
CAD	\$030000	\$0	$(1-1/R_c)(LOG16(T_c)-LOG16(Input))$
X1AC	\$0		A->B
EXPB			$EXP16((1-1/R_c)(LOG16(T_c)-LOG16(Input)))$
CMA	\$3c0000	\$40f	$(-1)G_{c}+EXP16((1-1/R_{c})(LOG16(T_{c})-LOG16(Input)))$
CAM	\$004000	\$40f	$G_c + \tau_{ea}(EXP16((1-1/R_c)(LOG16(T_c)-LOG16(Input))) - G_c)$
SCA	\$O	\$40f	Write new attack Gc
SKIP		\$3	Skip G _c release calculations since $ Input \ge T_c$
1MC	\$3c0000	\$40f	(G _c -1)
CAM	\$3ffff8	\$40f	$G_{c} - \tau_{cr} (G_{c} - 1) = G_{c} + \tau_{cr} (1 - G_{c})$
SCA	\$040000	\$40f	Write new release G_c .

Alesis Semiconductor AN3101-05-0702 12555 Jefferson Blvd., Suite 285 Los Angeles, CA 90066 Phone (310) 301-0780 Fax (310) 306-1551 www.alesis-semi.com

; Expander: Threshold = -72dB; Ratio = 4

; Attack τ = 0.323ms; Release τ = 0.682s

, Atta	t = 0.525 m	s, nereas	SC.	1 - 0.0023
CM	\$080000			Read Input channel 0 into A, scaled to +1 \rightarrow -1
SKIP	! N	\$1	;	Skip multiply by -1 if data positive
CM	\$380000	\$410	;	Read -Input into A, scaled to +1 $ ightarrow$ -1
X1AC	\$fff000		;	Store Input into B, subtract Te from Input
SKIP	! N	\$9	;	Skip Ge attack calculations if $ Input > T_e$
LOGB			;	LOG16(Input)
DAC	\$£00	\$34000	0	; LOG16(T_e)-LOG16($ Input $)
CAD	\$340000	\$0	;	$(1-R_e)(LOG16(T_e)-LOG16(Input))$
X1AC	\$0		;	A->B
EXPB			;	$EXP16((1-R_e)(LOG16(T_e)-LOG16(Input)))$
CMA	\$3c0000	\$40e	;	$(-1)G_e$ +EXP16((1-R _e)(LOG16(T _e)-LOG16(Input)))
CAM	\$004000	\$40e	;	$G_e + \tau_{ea} (\text{EXP16} ((1-R_e) (\text{LOG16} (T_e) - \text{LOG16} (\text{Input}))) - G_e)$
SCA	\$0	\$40e	;	Write new attack G _e
SKIP		\$3	;	Skip Ge release calculations since $ Input \leq T_e$
1MC	\$3c0000	\$40e	;	(G _e -1)
CAM	\$3ffff8	\$40e	;	$G_e - \tau_{er} (G_e - 1) = Ge + \tau_{er} (1 - G_e)$
SCA	\$040000	\$40e	;	Write new release G_e .
; Mul	tiply input by g	gains; Fi	na	al gain = 1
CM	\$040000	\$40f	;	Read G_c , multiplied by final gain
AMC	\$0	\$40e	;	$G_e * G_c * G$
AMC	\$0	\$410	;	Input = Input*Ge*Gc*G
SCA	\$0	\$410	;	Write chan 0

AN3101-05

1 K M

AN3101-05-0702